Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS **...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS *** this paper,a Fuzzy C-Means(FCM)clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by ***,a time series dataset is created in the time domain using AEFS *** AEFS-based weather is evaluated according to the time-series Membership Degree(MD)changes obtained by inputting this dataset into the ***,thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF ***,a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space ***,the rationality and reliability of the proposed method are verified by combining radar charts and expert *** results confirm that this method accurately characterizes the weather attributes and changes in the AEFS,and a negative distance-MD correlation is obtained for the first *** detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
From AI-assisted art creation to large language model (LLM)-powered ChatGPT, AI-generated contents and services are becoming a transforming force. It calls for the telecom industry to embrace the prospects of AIGC ser...
详细信息
Machine Learning Research often involves the use of diverse libraries, modules, and pseudocodes for data processing, cleaning, filtering, pattern recognition, and computer intelligence. Quantization of Effort Required...
详细信息
The research emphasizes the creation of a powerful and efficient system for the automaticextraction of contact information from physical calling cards through computer vision and information extraction techniques. Thi...
详细信息
Advances in machine learning and computer vision have significantly improved the diagnostic capabilities of medical imaging. Convolutional Neural Networks (CNNs) have emerged as a crucial tool for image classification...
详细信息
Globally, skin diseases are emerging as the most common health problem. It initiates depressive disorder, and it also causes physical health distress. It rarely led to skin cancer in extreme cases. Diagnosing skin dis...
详细信息
Diabetic Retinopathy (DR) is a serious hazard that can result inirreversible blindness if not addressed in a timely manner. Hence, numeroustechniques have been proposed for the accurate and timely detection ofthis dis...
详细信息
Diabetic Retinopathy (DR) is a serious hazard that can result inirreversible blindness if not addressed in a timely manner. Hence, numeroustechniques have been proposed for the accurate and timely detection ofthis disease. Out of these, Deep Learning (DL) and computer Vision (CV)methods for multiclass categorization of color fundus images diagnosed withDiabetic Retinopathy have sparked considerable attention. In this paper,we attempt to develop an extended ResNet152V2 architecture-based DeepLearning model, named ResNet2.0 to aid the timely detection of DR. TheAPTOS-2019 datasetwas used to train the model. This consists of 3662 fundusimages belonging to five different stages of DR: no DR (Class 0), mild DR(Class 1), moderate DR (Class 2), severe DR (Class 3), and proliferativeDR (Class 4). The model was gauged based on ability to detect stage-wiseDR. The images were pre-processed using negative and positive weightedGaussian-based masks as feature engineering to further enhance the qualityof the fundus images by removing the noise and normalizing the images. Upsamplingand data augmentation methods were used to address the skewnessof the original dataset. The proposed model achieved an overall accuracyof 91% and an area under the receiver-operating characteristic curve (AUC)score of 95.1%, outperforming existing Deep Learning models by around 10%.Furthermore, the class-wise F1 score for No DR was 92%, Mild DR was 82%,Moderate DR was 66%, Severe was DR 89% and Proliferative DR was 80%.
Road accidents are a significant global issue, with human error causing a substantial number of collisions. This emphasizes the need for advanced collision avoidance systems to improve road safety. In response, this s...
详细信息
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...
详细信息
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://***/yahuiliu99/PointC onT.
Agriculture is the key source for many people's livelihoods and an important contributor to a country's economy. There is a huge demand to streamline the process in the field of agriculture by integrating Comp...
详细信息
暂无评论