咨询与建议

限定检索结果

文献类型

  • 894 篇 会议
  • 420 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 1,321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 867 篇 工学
    • 460 篇 计算机科学与技术...
    • 400 篇 软件工程
    • 175 篇 信息与通信工程
    • 143 篇 机械工程
    • 127 篇 控制科学与工程
    • 119 篇 光学工程
    • 110 篇 生物医学工程(可授...
    • 93 篇 生物工程
    • 85 篇 电子科学与技术(可...
    • 61 篇 仪器科学与技术
    • 60 篇 电气工程
    • 41 篇 化学工程与技术
    • 19 篇 交通运输工程
    • 18 篇 力学(可授工学、理...
    • 17 篇 航空宇航科学与技...
    • 14 篇 材料科学与工程(可...
    • 14 篇 土木工程
    • 13 篇 建筑学
  • 450 篇 理学
    • 281 篇 数学
    • 144 篇 物理学
    • 106 篇 生物学
    • 89 篇 统计学(可授理学、...
    • 38 篇 化学
    • 33 篇 系统科学
  • 155 篇 管理学
    • 91 篇 管理科学与工程(可...
    • 69 篇 图书情报与档案管...
  • 68 篇 医学
    • 60 篇 临床医学
    • 48 篇 基础医学(可授医学...
    • 39 篇 药学(可授医学、理...
  • 18 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 14 篇 法学
  • 10 篇 农学
  • 9 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 149 篇 pattern recognit...
  • 141 篇 image processing
  • 87 篇 image segmentati...
  • 70 篇 feature extracti...
  • 59 篇 shape
  • 52 篇 image reconstruc...
  • 47 篇 computer vision
  • 44 篇 support vector m...
  • 44 篇 cameras
  • 40 篇 robustness
  • 38 篇 image analysis
  • 35 篇 face recognition
  • 34 篇 humans
  • 30 篇 image edge detec...
  • 30 篇 principal compon...
  • 28 篇 pixel
  • 27 篇 data mining
  • 25 篇 image recognitio...
  • 24 篇 object detection
  • 23 篇 layout

机构

  • 260 篇 institute of ima...
  • 241 篇 institute of ima...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 25 篇 institute of ima...
  • 24 篇 institute of med...
  • 21 篇 institute of ima...
  • 19 篇 image processing...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 13 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 9 篇 institute of ima...

作者

  • 174 篇 yang jie
  • 127 篇 jie yang
  • 56 篇 yuncai liu
  • 52 篇 huang xiaolin
  • 45 篇 pengfei shi
  • 22 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 19 篇 wang lisheng
  • 19 篇 mou xuanqin
  • 19 篇 杨杰
  • 18 篇 hong-bin shen
  • 17 篇 xuanqin mou
  • 17 篇 ping guo
  • 17 篇 yue zhou
  • 17 篇 gu yun
  • 16 篇 r. sablatnig
  • 16 篇 jian liu
  • 16 篇 shen hong-bin
  • 15 篇 xin yang

语言

  • 1,255 篇 英文
  • 46 篇 中文
  • 23 篇 其他
检索条件"机构=Institute of Image Processing & Pattern Recognition Henan University"
1321 条 记 录,以下是71-80 订阅
排序:
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
arXiv
收藏 引用
arXiv 2024年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Ridgeless regression has garnered attention among researchers, particularly in light of the "Benign Overfitting" phenomenon, where models interpolating noisy samples demonstrate robust generalization. Howeve... 详细信息
来源: 评论
A Multi-Stage Framework for the 2022 Multi-Structure Segmentation for Renal Cancer Treatment
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yusheng Zhao, Zhongchen Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China
Three-dimensional (3D) kidney parsing on computed tomography angiography (CTA) images is of great clinical significance. Automatic segmentation of kidney, renal tumor, renal vein and renal artery benefits a lot on sur... 详细信息
来源: 评论
Decentralized Kernel Ridge Regression Based on Data-Dependent Random Feature
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ruikai He, Fan He, Mingzhen Yang, Jie Huang, Xiaolin The Institute of Image Processing and Pattern Recognition The MOE Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai200240 China The STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven LeuvenB-3001 Belgium
Random feature (RF) has been widely used for node consistency in decentralized kernel ridge regression (KRR). Currently, the consistency is guaranteed by imposing constraints on coefficients of features, necessitating... 详细信息
来源: 评论
MDFlow: Unsupervised Optical Flow Learning by Reliable Mutual Knowledge Distillation
arXiv
收藏 引用
arXiv 2022年
作者: Kong, Lingtong Yang, Jie The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China
Recent works have shown that optical flow can be learned by deep networks from unlabelled image pairs based on brightness constancy assumption and smoothness prior. Current approaches additionally impose an augmentati... 详细信息
来源: 评论
Detection of Venous Thromboembolism Using Recurrent Neural Networks with Time-Series Data  24
Detection of Venous Thromboembolism Using Recurrent Neural N...
收藏 引用
3rd Asia Conference on Algorithms, Computing and Machine Learning, CACML 2024
作者: Xu, Can Huang, Yaqin Xiang, Xinni Lei, Haike Yang, Jie Shanghai Jiao Tong University Shanghai China Chongqing University Cancer Hospital Chongqing China West China Hospital Sichuan University Chengdu China Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition China Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment China West China School of Medicine China Chongqing Cancer Multi-omics Big Data Application Engineering Research Center China
Machine Learning (ML) has been widely applied to medical science for decades. As common knowledge, the progress of many diseases is often chronic and dynamic. Longitudinal data, or time-series data, has better descrip... 详细信息
来源: 评论
Distilling Object Detectors with Global Knowledge
arXiv
收藏 引用
arXiv 2022年
作者: Tang, Sanli Zhang, Zhongyu Cheng, Zhanzhan Lu, Jing Xu, Yunlu Niu, Yi He, Fan Hikvision Research Institute Hangzhou China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
Knowledge distillation learns a lightweight student model that mimics a cumbersome teacher. Existing methods regard the knowledge as the feature of each instance or their relations, which is the instance-level knowled... 详细信息
来源: 评论
Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT images  1
收藏 引用
1st 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with 23rd International Conference on Medical image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Chen, Huai Chen, Haibin Wang, Lisheng Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Perception Vision Medical Technology Guangzhou China
The automatic segmentation of head and neck (H&N) tumor from FDG-PET and CT images is urgently needed for radiomics. In this paper, we propose a framework to segment H&N tumor automatically by fusing informati... 详细信息
来源: 评论
Semantic Transformation-Based Data Augmentation for Few-Shot Learning
SSRN
收藏 引用
SSRN 2023年
作者: Pan, Mei-Hong Xin, Hong-Yi Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiaotong University Shanghai200240 China
Few-shot learning (FSL) as a data-scarce method, aims to recognize instances of unseen classes solely based on very few examples. However, the model can easily become overfitted due to the biased distribution formed w... 详细信息
来源: 评论
3D Vessel Segmentation with Limited Guidance of 2D Structure-agnostic Vessel Annotations
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Huai Wang, Xiuying Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science The University of Sydney SydneyNSW2006 Australia
Delineating 3D blood vessels is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Supervised deep learning has demonstrated its ... 详细信息
来源: 评论
Pick the Best Pre-trained Model: Towards Transferability Estimation for Medical image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Yuncheng Wei, Meng He, Junjun Yang, Jie Ye, Jin Gu, Yun Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shanghai AI Lab Shanghai China
Transfer learning is a critical technique in training deep neural networks for the challenging medical image segmentation task that requires enormous resources. With the abundance of medical image data, many research ... 详细信息
来源: 评论