咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 39 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 24 篇 生物医学工程(可授...
    • 18 篇 生物工程
    • 16 篇 光学工程
    • 15 篇 信息与通信工程
    • 5 篇 机械工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 5 篇 化学工程与技术
    • 3 篇 安全科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 核科学与技术
  • 39 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 6 篇 化学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 15 篇 医学
    • 14 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 8 篇 管理学
    • 6 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 biomedical imagi...
  • 6 篇 pattern recognit...
  • 6 篇 image processing
  • 5 篇 image segmentati...
  • 5 篇 computerized tom...
  • 5 篇 echocardiography
  • 4 篇 computed tomogra...
  • 4 篇 radiology
  • 3 篇 hospitals
  • 3 篇 convolution
  • 3 篇 computer graphic...
  • 3 篇 feature extracti...
  • 2 篇 lesions
  • 2 篇 image texture
  • 2 篇 deep neural netw...
  • 2 篇 neural networks
  • 2 篇 approximation th...
  • 2 篇 mobile robots
  • 2 篇 area measurement
  • 2 篇 diagnosis

机构

  • 24 篇 institute of med...
  • 24 篇 institute of ima...
  • 6 篇 institute of ima...
  • 5 篇 institute of ima...
  • 4 篇 institute of ima...
  • 4 篇 department of au...
  • 4 篇 pattern recognit...
  • 4 篇 shanghai key lab...
  • 3 篇 institute of ima...
  • 3 篇 institute for co...
  • 2 篇 ku leuven leuven...
  • 2 篇 key laboratory o...
  • 2 篇 department of op...
  • 2 篇 department of re...
  • 2 篇 national clinica...
  • 2 篇 department of el...
  • 2 篇 shanghai center ...
  • 2 篇 school of operat...
  • 2 篇 research institu...
  • 2 篇 institute of pat...

作者

  • 27 篇 yang jie
  • 17 篇 huang xiaolin
  • 11 篇 gu yun
  • 10 篇 jie yang
  • 8 篇 qin yulei
  • 8 篇 suykens johan a....
  • 8 篇 zheng hao
  • 6 篇 liu fanghui
  • 6 篇 yang guang-zhong
  • 5 篇 yun gu
  • 5 篇 zhu yue-min
  • 4 篇 wang lisheng
  • 4 篇 shi lei
  • 4 篇 wang lihui
  • 3 篇 g. langs
  • 3 篇 xiaolin huang
  • 3 篇 guo tianjiao
  • 3 篇 liu wei
  • 3 篇 chen yudong
  • 2 篇 r. sablatnig

语言

  • 78 篇 英文
  • 2 篇 其他
检索条件"机构=Institute of Image Processing and Pattern Recognition & Institute of Medical Robotics"
80 条 记 录,以下是41-50 订阅
排序:
Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Yao, Feng Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China Université de Lyon INSA Lyon CREATIS CNRS INSERM UMR 5220 VilleurbanneU1206 France Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and ba... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Alleviating class-wise gradient imbalance for pulmonary airway segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Hao Qin, Yulei Gu, Yun Xie, Fangfang Yang, Jie Sun, Jiayuan Yang, Guang-Zhong Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong Univeristy Shanghai China School of Biomedical Engineering Shanghai Jiao Tong Univeristy Shanghai China Department of Respiratory and Critical Care Medicine Department of Respiratory Endoscopy Shanghai Chest Hospital Shanghai Engineering Research Center of Respiratory Endoscopy Shanghai China
— Automated airway segmentation is a prerequisite for pre-operative diagnosis and intra-operative navigation for pulmonary intervention. Due to the small size and scattered spatial distribution of peripheral bronchi,... 详细信息
来源: 评论
The effect of data augmentation on classification of atrial fibrillation in short single-lead ecg signals using deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Hatamian, Faezeh Nejati Ravikumar, Nishant Vesal, Sulaiman Kemeth, Felix P. Struck, Matthias Maier, Andreas Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Pattern Recognition Lab Department of Computer Science Friedrich-Alexander University Erlangen-Nrnberg Erlangen Germany School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
COVID-MTL: Multitask learning with shift3D and random-weighted loss for automated diagnosis and severity assessment of COVID-19
arXiv
收藏 引用
arXiv 2020年
作者: Bao, Guoqing Chen, Huai Liu, Tongliang Gong, Guanzhong Yin, Yong Wang, Lisheng Wang, Xiuying School of Computer Science The University of Sydney J12/1 Cleveland St Darlington SydneyNSW2008 Australia Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Radiation Oncology Shandong Cancer Hospital and Institute Shandong First Medical University Shandong Academy of Medical Sciences Jinan250117 China
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19. Radiology and nucleic acid test (NAT) are complementary COVID-19 diagnosis methods. In this paper, we present an e... 详细信息
来源: 评论
The Effect of Data Augmentation on Classification of Atrial Fibrillation in Short Single-Lead ECG Signals Using Deep Neural Networks
The Effect of Data Augmentation on Classification of Atrial ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Faezeh Nejati Hatamian Nishant Ravikumar Sulaiman Vesal Felix P. Kemeth Matthias Struck Andreas Maier Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB) School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom Pattern Recognition Lab Friedrich-Alexander University Erlangen-Nürnberg Erlangen Germany
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the...
来源: 评论
AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2019年
作者: Qin, Yulei Chen, Mingjian Zheng, Hao Gu, Yun Shen, Mali Yang, Jie Huang, Xiaolin Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Insa Lyon Lyon France Hamlyn Centre for Robotic Surgery Imperial College London London United Kingdom
Airway segmentation on CT scans is critical for pulmonary disease diagnosis and endobronchial navigation. Manual extraction of airway requires strenuous efforts due to the complicated structure and various appearance ... 详细信息
来源: 评论
Random Fourier features via fast surrogate leverage weighted sampling
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Fanghui Huang, Xiaolin Chen, Yudong Yang, Jie Suykens, Johan A.K. Department of Electrical Engineering [ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Institute of Medical Robotics Shanghai Jiao Tong University China School of Operations Research and Information Engineering Cornell University United States
In this paper, we propose a fast surrogate leverage weighted sampling strategy to generate refined random Fourier features for kernel approximation. Compared to the current state-of-the-art method that uses the levera... 详细信息
来源: 评论
Adversarial attack type I: Cheat classifiers by significant changes
arXiv
收藏 引用
arXiv 2018年
作者: Tang, Sanli Huang, Xiaolin Chen, Mingjian Sun, Chengjin Yang, Jie Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat clas... 详细信息
来源: 评论