咨询与建议

限定检索结果

文献类型

  • 973 篇 会议
  • 422 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 1,400 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 914 篇 工学
    • 539 篇 计算机科学与技术...
    • 471 篇 软件工程
    • 211 篇 信息与通信工程
    • 155 篇 光学工程
    • 121 篇 控制科学与工程
    • 115 篇 生物医学工程(可授...
    • 109 篇 生物工程
    • 96 篇 机械工程
    • 85 篇 电子科学与技术(可...
    • 63 篇 电气工程
    • 51 篇 仪器科学与技术
    • 48 篇 化学工程与技术
    • 24 篇 交通运输工程
    • 22 篇 航空宇航科学与技...
    • 20 篇 土木工程
    • 18 篇 建筑学
    • 16 篇 力学(可授工学、理...
    • 14 篇 材料科学与工程(可...
  • 530 篇 理学
    • 321 篇 数学
    • 176 篇 物理学
    • 124 篇 生物学
    • 94 篇 统计学(可授理学、...
    • 48 篇 化学
    • 33 篇 系统科学
  • 165 篇 管理学
    • 87 篇 管理科学与工程(可...
    • 86 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 70 篇 医学
    • 63 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 14 篇 法学
  • 11 篇 艺术学
  • 10 篇 农学
  • 7 篇 经济学
  • 7 篇 教育学
  • 5 篇 文学
  • 5 篇 军事学
  • 1 篇 哲学

主题

  • 144 篇 pattern recognit...
  • 135 篇 image processing
  • 93 篇 image segmentati...
  • 81 篇 feature extracti...
  • 59 篇 shape
  • 55 篇 image reconstruc...
  • 45 篇 support vector m...
  • 45 篇 cameras
  • 45 篇 computer vision
  • 37 篇 image analysis
  • 37 篇 robustness
  • 36 篇 face recognition
  • 35 篇 image edge detec...
  • 32 篇 humans
  • 29 篇 image recognitio...
  • 29 篇 principal compon...
  • 28 篇 data mining
  • 27 篇 pixel
  • 27 篇 training
  • 26 篇 object detection

机构

  • 239 篇 institute of ima...
  • 214 篇 institute of ima...
  • 37 篇 institute of ima...
  • 34 篇 institute of ima...
  • 25 篇 institute of med...
  • 24 篇 image processing...
  • 21 篇 institute of ima...
  • 21 篇 institute of ima...
  • 20 篇 institute for pa...
  • 17 篇 institute of ima...
  • 16 篇 state key labora...
  • 14 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 11 篇 university of ch...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 institute of pat...
  • 9 篇 laboratory of im...

作者

  • 178 篇 yang jie
  • 114 篇 jie yang
  • 53 篇 yuncai liu
  • 53 篇 huang xiaolin
  • 41 篇 pengfei shi
  • 34 篇 zhang tianxu
  • 24 篇 ping guo
  • 22 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 19 篇 mou xuanqin
  • 19 篇 jian liu
  • 18 篇 wang lisheng
  • 18 篇 hong-bin shen
  • 18 篇 gu yun
  • 17 篇 xuanqin mou
  • 17 篇 ding mingyue
  • 17 篇 shen hong-bin
  • 16 篇 guo ping
  • 16 篇 liu wei

语言

  • 1,334 篇 英文
  • 44 篇 中文
  • 25 篇 其他
检索条件"机构=Institute of Image Processing and Pattern Recognition North China University of Technology"
1400 条 记 录,以下是11-20 订阅
排序:
Family Doctor Model Training Based on Large Language Model Tuning  1st
Family Doctor Model Training Based on Large Language Model T...
收藏 引用
1st International Conference on pattern Analysis and Machine Intelligence, ICPAMI 2024
作者: Zhu, Yu Li, Wangtao Ling, Xufeng Yang, Jie Shanghai China School of AI Shanghai Normal University Tianhua College Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
As society increasingly focuses on health issues, the importance of the role of family doctors becomes more apparent. The question of how to use cutting-edge technology to improve the accessibility and efficiency of m... 详细信息
来源: 评论
OCR4HSV: A Multi-task Learning Approach for Handwritten Signature Verification  27th
OCR4HSV: A Multi-task Learning Approach for Handwritten Sig...
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Lin, Chao-Qun Wang, Da-Han Su, Yan-Fei Ge, De-Wu Zhang, Xu-Yao School of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China Xiamen KEYTOP Communication Technology Co. Xiamen361024 China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation of Chinese Academy of Sciences Beijing100190 China
Handwritten signature verification (HSV) models are notably recognized for their ability to discern whether a signature is forged in an offline document. Recently, HSV technology has made significant develop... 详细信息
来源: 评论
Reflecting topology consistency and abnormality via learnable attentions for airway labeling
收藏 引用
International Journal of Computer Assisted Radiology and Surgery 2025年 1-9页
作者: Li, Chenyu Zhang, Minghui Zhang, Chuyan Gu, Yun Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory of Flexible Medical Robotics Tongren Hospital Shanghai Jiao Tong University Shanghai China
Purpose: Accurate airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy. Automatic airway labeling is challenging due to significant anatomical ... 详细信息
来源: 评论
CATransUnetLBP: Accurate Prediction of Protein-Ligand Binding Pockets Using a Hybrid Network
IEEE Transactions on Computational Biology and Bioinformatic...
收藏 引用
IEEE Transactions on Computational Biology and Bioinformatics 2025年 第1期22卷 355-367页
作者: Cheng Cai Zhaohong Deng Andong Li Yun Zuo Haoran Chen Zhisheng Wei Lei Wang Xiaoyong Pan Hong-Bin Shen Dong-Jun Yu School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai China School of Biotechnology Jiangnan University Wuxi China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China
The development of intelligent methods capable of predicting protein-ligand binding sites has become a popular research field. Recently, deep learning based methods have been proposed as a promising solution for this ... 详细信息
来源: 评论
2M3DF: Advancing 3D Industrial Defect Detection with Multi Perspective Multimodal Fusion Network
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Asad, Mujtaba Azeem, Waqar Jiang, He Mustafa, Hafiz Tayyab Yang, Jie Liu, Wei Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition Department of Automation Shanghai200240 China Lahore Garrison University Department of Software Engineering Lahore54000 Pakistan China University of Mining and Technology School of Information and Control Engineering Jiangsu Xuzhou221116 China Zhejiang Normal University School of Computer Science and Technology Jinhua321004 China
In the context of Industrial Anomaly Detection (IAD), ensuring the quality of manufactured products is critical. Traditional 2D based methods often fail to capture anomalies present in complex 3D shapes. For effective... 详细信息
来源: 评论
Enhance the old representations’ adaptability dynamically for exemplar-free continual learning
收藏 引用
Neurocomputing 2025年 639卷
作者: Li, Kunchi Ding, Chaoyue Wan, Jun Yu, Shan School of Computer and Information Engineering of Xiamen University of Technology Fujian Xiamen361024 China Fujian Key Laboratory of Pattern Recognition and Image Understanding of Xiamen University of Technology Fujian Xiamen361024 China Institute of Automation of Chinese Academy of Sciences Beijing Beijing100190 China
In continual learning, new data often falls outside the distribution of previous data. Since the old model is trained solely on past tasks and has not encountered the new data, its learned representations lack the ada... 详细信息
来源: 评论
Consistency-Guided Adaptive Alternating Training for Semi-Supervised Salient Object Detection
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Chen, Liyuan Liu, Wei Wang, Hua Jeon, Sang-Woon Jiang, Yunliang Zheng, Zhonglong Zhejiang Normal University School of Computer Science and Technology Jinhua321004 China Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition Department of Automation Shanghai200240 China Victoria University Institute for Sustainable Industries and Liveable Cities College of Engineering and Science MelbourneVIC8001 Australia Hanyang University Department of Electrical and Electronic Engineering Ansan Korea Republic of
This paper presents a novel approach that leverages two models to integrate features from numerous unlabeled images, addressing the challenge of semi-supervised salient object detection (SSOD). Unlike conventional met... 详细信息
来源: 评论
A novel enhancement method for low illumination images based on microarray camera
收藏 引用
Applied Mathematics(A Journal of Chinese Universities) 2017年 第3期32卷 313-322页
作者: ZOU Jian-cheng ZHENG Wen-qi YANG Zhi-hui Institute of Image Processing and Pattern Recognition North China University of Technology Beijing 100144 China.
It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer v... 详细信息
来源: 评论
Robust skeleton extraction of gray images based on level set approach
收藏 引用
Journal of Multimedia 2013年 第1期8卷 24-31页
作者: Yang, Zhihui Guo, Fangfang Dong, Ping Institute of Image Processing and Pattern Recognition North China University of Technology Beijing China
The skeleton of an image object is a simplified representation, which is of great significance for the image recognition and matching. To obtain a smooth and accurate skeleton of a specified object in the gray image, ... 详细信息
来源: 评论
LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal patterns and Semantics
arXiv
收藏 引用
arXiv 2025年
作者: Tang, Jialiang Chen, Shuo Gong, Chen Zhang, Jing Tao, Dacheng School of Computer Science and Engineering Nanjing University of Science and Technology China College of Computing and Data Science Nanyang Technological University Singapore School of Intellgence Science and Technology Nanjing University China Department of Automation Institute of Image ProceProceedingssing and Pattern Recognition Shanghai Jiao Tong University China School of Computer Science Wuhan University China
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring. Recent studies have revealed that Large Language Models (LLMs), with their powerful in-contextual mod... 详细信息
来源: 评论