咨询与建议

限定检索结果

文献类型

  • 973 篇 会议
  • 418 篇 期刊文献

馆藏范围

  • 1,391 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 910 篇 工学
    • 534 篇 计算机科学与技术...
    • 468 篇 软件工程
    • 211 篇 信息与通信工程
    • 154 篇 光学工程
    • 121 篇 控制科学与工程
    • 114 篇 生物医学工程(可授...
    • 108 篇 生物工程
    • 97 篇 机械工程
    • 85 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 51 篇 仪器科学与技术
    • 48 篇 化学工程与技术
    • 24 篇 交通运输工程
    • 22 篇 航空宇航科学与技...
    • 20 篇 土木工程
    • 18 篇 建筑学
    • 16 篇 力学(可授工学、理...
    • 14 篇 材料科学与工程(可...
  • 526 篇 理学
    • 319 篇 数学
    • 175 篇 物理学
    • 123 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 46 篇 化学
    • 33 篇 系统科学
  • 165 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 86 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 68 篇 医学
    • 61 篇 临床医学
    • 51 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 14 篇 法学
  • 11 篇 艺术学
  • 10 篇 农学
  • 7 篇 经济学
  • 7 篇 教育学
  • 5 篇 文学
  • 5 篇 军事学
  • 1 篇 哲学

主题

  • 139 篇 pattern recognit...
  • 136 篇 image processing
  • 91 篇 image segmentati...
  • 80 篇 feature extracti...
  • 59 篇 shape
  • 54 篇 image reconstruc...
  • 45 篇 support vector m...
  • 45 篇 cameras
  • 45 篇 computer vision
  • 37 篇 image analysis
  • 37 篇 robustness
  • 36 篇 face recognition
  • 35 篇 image edge detec...
  • 32 篇 humans
  • 29 篇 image recognitio...
  • 29 篇 principal compon...
  • 28 篇 data mining
  • 27 篇 pixel
  • 26 篇 object detection
  • 26 篇 target tracking

机构

  • 237 篇 institute of ima...
  • 214 篇 institute of ima...
  • 37 篇 institute of ima...
  • 34 篇 institute of ima...
  • 24 篇 image processing...
  • 23 篇 institute of med...
  • 21 篇 institute of ima...
  • 21 篇 institute of ima...
  • 19 篇 institute for pa...
  • 17 篇 institute of ima...
  • 16 篇 state key labora...
  • 13 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 11 篇 university of ch...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 institute of pat...
  • 9 篇 laboratory of im...

作者

  • 177 篇 yang jie
  • 113 篇 jie yang
  • 53 篇 yuncai liu
  • 53 篇 huang xiaolin
  • 40 篇 pengfei shi
  • 34 篇 zhang tianxu
  • 24 篇 ping guo
  • 22 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 19 篇 mou xuanqin
  • 19 篇 jian liu
  • 18 篇 wang lisheng
  • 17 篇 xuanqin mou
  • 17 篇 ding mingyue
  • 17 篇 hong-bin shen
  • 17 篇 gu yun
  • 16 篇 guo ping
  • 16 篇 yue zhou
  • 16 篇 xiangjian he

语言

  • 1,325 篇 英文
  • 44 篇 中文
  • 25 篇 其他
检索条件"机构=Institute of Image Processing and Pattern Recognition North China University of Technology"
1391 条 记 录,以下是311-320 订阅
排序:
Indefinite kernel spectral learning  30
Indefinite kernel spectral learning
收藏 引用
30th Benelux Conference on Artificial Intelligence, BNAIC 2018
作者: Mehrkanoon, Siamak Huang, Xiaolin Suykens, Johan A.K. Dept. of Data Science and Knowledge Engineering Maastricht University Netherlands Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China KU Leuven ESAT-STADIUS Kasteelpark Arenberg 10 LeuvenB-3001 Belgium
This paper introduces the indefinite learning in the framework of least squares support vector machines (LS-SVM). Here the analysis of the Multi-Class Semi-Supervised Kernel Spectral Clustering (MSS-KSC) model with in... 详细信息
来源: 评论
Embedding bilateral filter in least squares for efficient edge-preserving image smoothing
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Wei Zhang, Pingping Chen, Xiaogang Shen, Chunhua Huang, Xiaolin Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Dalian University of Technology China University of Shanghai for Science and Technology China University of Adelaide Australia
Edge-preserving smoothing is a fundamental procedure for many computer vision and graphic applications. This can be achieved with either local methods or global methods. In most cases, global methods can yield superio... 详细信息
来源: 评论
An Application-Oriented Autoscaler Based on Deep Learning
An Application-Oriented Autoscaler Based on Deep Learning
收藏 引用
2018 International Computers, Signals and Systems Conference, ICOMSSC 2018
作者: Cao, Yu Xia, Qianchen Li, Zhaoxi Xu, Liangliang Yang, Jun North China Institute of Computing Technology Fourth Basic Department Beijing China Beihang University School of Computer Science and Engineering Beijing China Beihang University Image Processing Center Beijing China
In order to meet the performance requirements and reduce resource consumption, researchers have proposed many autoscaling schemes. However, most of them only considered current states of the servers or application tha... 详细信息
来源: 评论
Overview of the CCKS 2019 knowledge graph evaluation track: Entity, relation, event and QA
arXiv
收藏 引用
arXiv 2020年
作者: Han, Xianpei Wang, Zhichun Zhang, Jiangtao Wen, Qinghua Li, Wenqi Tang, Buzhou Wang, Qi Feng, Zhifan Zhang, Yang Lu, Yajuan Wang, Haitao Chen, Wenliang Shao, Hao Chen, Yubo Liu, Kang Zhao, Jun Wang, Taifeng Zhang, Kezun Wang, Meng Jiang, Yinlin Qi, Guilin Zou, Lei Hu, Sen Zhang, Minhao Lin, Yinnian Chinese Information Processing Laboratory Institute of Software Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence Beijing Normal University Beijing100875 China 305 Hospital of People’s Liberation Army Beijing100017 China Department of Computer Science and Technology Tsinghua University Beijing100084 China Yidu Cloud Beijing100000 China Harbin Institute of Technology Shenzhen Guangdong518055 China Baidu Beijing100193 China School of Computer Science & Technology Soochow University Suzhou Jiangsu215006 China Gowild Suzhou Jiangsu215002 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China Ant Financial Hangzhou Zhejiang310000 China School of Computer Science and Engineering Southeast University Nanjing Jiangsu211189 China Key Laboratory of Computer Network Information Integration Southeast University Nanjing Jiangsu211189 China Peking University Beijing100871 China
Knowledge graph models world knowledge as concepts, entities, and the relationships between them, which has been widely used in many real-world tasks. CCKS 2019 held an evaluation track with 6 tasks and attracted more... 详细信息
来源: 评论
Triplet Graph Convolutional Network for Multi-scale Analysis of Functional Connectivity Using Functional MRI  1
收藏 引用
1st International Workshop on Graph Learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd International Conference on Medical image Computing and Computer-Assisted Intervention, MICCAI 2019
作者: Yao, Dongren Liu, Mingxia Wang, Mingliang Lian, Chunfeng Wei, Jie Sun, Li Sui, Jing Shen, Dinggang Brainnetome Center & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Department of Radiology and BRIC University of North Carolina at Chapel Hill Chapel HillNC27599 United States College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing210016 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health Ministry of Health Peking University Beijing100191 China
Brain functional connectivity (FC) derived from resting-state functional MRI (rs-fMRI) data has become a powerful approach to measure and map brain activity. Using fMRI data, graph convolutional network (GCN) has rece... 详细信息
来源: 评论
Super-resolution reconstruction of color image based on microarray lens
Super-resolution reconstruction of color image based on micr...
收藏 引用
2017 IEEE International Conference on Applied System Innovation, ICASI 2017
作者: Zou, Jiancheng Zhang, Honggen Institute of Image Processing and Pattern Recognition North China University of Technology No. 5 Jinyuanzhuang Road Shijingshan District Beijing China
In this paper, we propose a novel method which combines with color microarray cameras and super-resolution algorithms. Compared with ordinary cameras, the array camera can capture more details of the image, so better ... 详细信息
来源: 评论
Sparse Kernel Regression with Coefficient-based `q−regularization
收藏 引用
Journal of Machine Learning Research 2019年 20卷
作者: Shi, Lei Huang, Xiaolin Feng, Yunlong Suykens, Johan A.K. Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai China Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing Shanghai China Department of Mathematics and Statistics State University of New York at Albany New York United States Department of Electrical Engineering ESAT-STADIUS KU Leuven Kasteelpark Arenberg 10 LeuvenB-3001 Belgium
In this paper, we consider the `q−regularized kernel regression with 0 q−penalty term over a linear span of features generated by a kernel function. We study the asymptotic behavior of the algorithm under the framewor... 详细信息
来源: 评论
CNN-based invertible wavelet scattering for the investigation of diffusion properties of the in vivo human heart in diffusion tensor imaging
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Zeyu Wang, Lihui Kuai, Zixiang Chen, Qijian Cheng, Xinyu Yang, Feng Yang, Jie Zhu, Yuemin Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China University Lyon INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 LyonF-69621 France
In vivo diffusion tensor imaging (DTI) is a promising technique to investigate noninvasively the fiber structures of the in vivo human heart. However, signal loss due to motions remains a persistent problem in in vivo... 详细信息
来源: 评论
A generalization theory based on independent and task-identically distributed assumption
arXiv
收藏 引用
arXiv 2019年
作者: Zheng, Guanhua Sang, Jitao Li, Houqiang Yu, Jian Xu, Changsheng University of Science and Technology of China School of Computer and Information Technology Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing100044 China Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Hefei230026 China National Lab of Pattern Recognition Institute of Automation CAS Beijing100190 China University of Chinese Academy of Sciences
—Existing generalization theories analyze the generalization performance mainly based on the model complexity and training process. The ignorance of the task properties, which results from the widely used IID assumpt... 详细信息
来源: 评论
NCEM: Network structural similarity metric-based clustering for noisy cryo-EM single particle images
NCEM: Network structural similarity metric-based clustering ...
收藏 引用
Chinese Automation Congress
作者: Yin Shuo Biao Zhang Hong-Bin Shen Yang Yang Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Computer Science Shanghai Jiao Tong University Shanghai China
Cryo-EM single particle image reconstruction is currently a powerful technique for revealing the structure of biomacromolecules. Compared to traditional structural biology techniques like X-Ray, it requires fewer rest... 详细信息
来源: 评论