咨询与建议

限定检索结果

文献类型

  • 919 篇 会议
  • 422 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 1,348 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 471 篇 计算机科学与技术...
    • 413 篇 软件工程
    • 180 篇 信息与通信工程
    • 144 篇 机械工程
    • 126 篇 控制科学与工程
    • 120 篇 光学工程
    • 112 篇 生物医学工程(可授...
    • 94 篇 生物工程
    • 84 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 59 篇 电气工程
    • 41 篇 化学工程与技术
    • 19 篇 交通运输工程
    • 18 篇 力学(可授工学、理...
    • 17 篇 航空宇航科学与技...
    • 15 篇 材料科学与工程(可...
    • 15 篇 土木工程
    • 14 篇 建筑学
  • 459 篇 理学
    • 287 篇 数学
    • 146 篇 物理学
    • 107 篇 生物学
    • 87 篇 统计学(可授理学、...
    • 38 篇 化学
    • 33 篇 系统科学
  • 154 篇 管理学
    • 91 篇 管理科学与工程(可...
    • 68 篇 图书情报与档案管...
  • 71 篇 医学
    • 63 篇 临床医学
    • 49 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
  • 18 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 15 篇 法学
  • 10 篇 农学
  • 8 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 4 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 153 篇 pattern recognit...
  • 143 篇 image processing
  • 90 篇 image segmentati...
  • 70 篇 feature extracti...
  • 60 篇 shape
  • 53 篇 image reconstruc...
  • 48 篇 computer vision
  • 45 篇 support vector m...
  • 44 篇 cameras
  • 41 篇 robustness
  • 39 篇 image analysis
  • 35 篇 face recognition
  • 34 篇 humans
  • 30 篇 image edge detec...
  • 30 篇 principal compon...
  • 29 篇 pixel
  • 28 篇 data mining
  • 26 篇 image recognitio...
  • 24 篇 object detection
  • 23 篇 layout

机构

  • 260 篇 institute of ima...
  • 241 篇 institute of ima...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 25 篇 institute of ima...
  • 24 篇 institute of med...
  • 21 篇 institute of ima...
  • 19 篇 image processing...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 13 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 9 篇 institute of ima...

作者

  • 174 篇 yang jie
  • 129 篇 jie yang
  • 57 篇 yuncai liu
  • 52 篇 huang xiaolin
  • 45 篇 pengfei shi
  • 23 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 wang lisheng
  • 19 篇 mou xuanqin
  • 19 篇 hong-bin shen
  • 19 篇 杨杰
  • 19 篇 kropatsch walter...
  • 17 篇 xuanqin mou
  • 17 篇 ping guo
  • 17 篇 yue zhou
  • 17 篇 gu yun
  • 16 篇 r. sablatnig
  • 16 篇 yu qiao
  • 16 篇 jian liu

语言

  • 1,279 篇 英文
  • 48 篇 中文
  • 24 篇 其他
检索条件"机构=Institute of Image Processing and Pattern recognition"
1348 条 记 录,以下是231-240 订阅
排序:
Automatic Monitoring of Driver's Physiological Parameters Based on Microarray Camera
Automatic Monitoring of Driver's Physiological Parameters Ba...
收藏 引用
IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)
作者: Jiancheng Zou Zhengzheng Li Peizhou Yan Institute of Image Processing and Pattern Recognition North China University of Technology Beijing Key Laboratory of Urban Rod Traffic Intelligent Control Technology North China University of Technology Shijingshan District Beijing China
Driver's physical and mental states are very important factors affecting the driving states. Traffic accidents are occurred by accompanying abnormal physiological parameters. So how to monitor automatically driver... 详细信息
来源: 评论
Learning In-Place Residual Homogeneity for image Detail Enhancement
Learning In-Place Residual Homogeneity for Image Detail Enha...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: He Jiang HuangKai Cai Jie Yang Institute of Pattern Recognition and Image Processing Shanghai Jiaotong University China
In this paper, we put forward and demonstrate a novel method in image and video detail enhancement-- in-place residual homogeneity (IP). In-place residual homogeneity is a regular law we find in testing different bloc... 详细信息
来源: 评论
image synthesis with adversarial networks: A comprehensive survey and case studies
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Granger, Eric Zhou, Huiyu Wang, Ruili Emre Celebi, M. Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Laboratoire d’imagerie De vision et d’intelligence artificielle École de technologie supérieure Montreal Canada School of Informatics University of Leicester United Kingdom School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Computer Science University of Central Arkansas United States
Generative Adversarial Networks (GANs) have been extremely successful in various application domains such as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to a ... 详细信息
来源: 评论
Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Yao, Feng Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China Université de Lyon INSA Lyon CREATIS CNRS INSERM UMR 5220 VilleurbanneU1206 France Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and ba... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Discrete Locally-Linear Preserving Hashing
Discrete Locally-Linear Preserving Hashing
收藏 引用
IEEE International Conference on image processing
作者: Xiang Li Chao Ma Jie Yang Xiaolin Huang Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
Recently, hashing has attracted considerable attention for nearest neighbor search due to its fast query speed and low storage cost. However, existing unsupervised hashing algorithms have two problems in common. First...
来源: 评论
Cross-receptive Focused Inference Network for Lightweight image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Microarray Camera image Super-Resolution with Neural Network and Fusion of V-System
Microarray Camera Image Super-Resolution with Neural Network...
收藏 引用
International Conference on Computer Science & Education (ICCSE)
作者: Jiancheng Zou Honggen Zhang Institute of Image Processing and Pattern Recognition orth China University of Technology Beijing China
With the rapid development of artificial intelligence technology, more and more intelligent devices are beginning to be manufactured. At the same time, the demand of the image resolution is getting higher. Super-resol... 详细信息
来源: 评论
LSTM MULTIPLE OBJECT TRACKER COMBINING MULTIPLE CUES
LSTM MULTIPLE OBJECT TRACKER COMBINING MULTIPLE CUES
收藏 引用
IEEE International Conference on image processing
作者: Yiming Liang Yue Zhou Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
Traditional methods for multiple object tracking usually consider features at image level and reason about simple space and time constraints. However, in this paper we propose a multiple object tracker based on LSTM n...
来源: 评论
Web Page Classification Algorithm Based on Semi-Supervised Support Vector Machine
Web Page Classification Algorithm Based on Semi-Supervised S...
收藏 引用
IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC)
作者: Wenqing Huang Hui You School of Information The Institute of computer vision image processing and pattern recognition acceptable Hangzhou China
Most web page classification algorithms are learning algorithms under the single-instance single-label framework. Multi-Instance Multi-Label learning is a new machine learning framework. MIMLSVM+ algorithm, using dege... 详细信息
来源: 评论