咨询与建议

限定检索结果

文献类型

  • 919 篇 会议
  • 422 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 1,348 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 471 篇 计算机科学与技术...
    • 413 篇 软件工程
    • 180 篇 信息与通信工程
    • 144 篇 机械工程
    • 126 篇 控制科学与工程
    • 120 篇 光学工程
    • 112 篇 生物医学工程(可授...
    • 94 篇 生物工程
    • 84 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 59 篇 电气工程
    • 41 篇 化学工程与技术
    • 19 篇 交通运输工程
    • 18 篇 力学(可授工学、理...
    • 17 篇 航空宇航科学与技...
    • 15 篇 材料科学与工程(可...
    • 15 篇 土木工程
    • 14 篇 建筑学
  • 459 篇 理学
    • 287 篇 数学
    • 146 篇 物理学
    • 107 篇 生物学
    • 87 篇 统计学(可授理学、...
    • 38 篇 化学
    • 33 篇 系统科学
  • 154 篇 管理学
    • 91 篇 管理科学与工程(可...
    • 68 篇 图书情报与档案管...
  • 71 篇 医学
    • 63 篇 临床医学
    • 49 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
  • 18 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 15 篇 法学
  • 10 篇 农学
  • 8 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 4 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 153 篇 pattern recognit...
  • 143 篇 image processing
  • 90 篇 image segmentati...
  • 70 篇 feature extracti...
  • 60 篇 shape
  • 53 篇 image reconstruc...
  • 48 篇 computer vision
  • 45 篇 support vector m...
  • 44 篇 cameras
  • 41 篇 robustness
  • 39 篇 image analysis
  • 35 篇 face recognition
  • 34 篇 humans
  • 30 篇 image edge detec...
  • 30 篇 principal compon...
  • 29 篇 pixel
  • 28 篇 data mining
  • 26 篇 image recognitio...
  • 24 篇 object detection
  • 23 篇 layout

机构

  • 260 篇 institute of ima...
  • 241 篇 institute of ima...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 25 篇 institute of ima...
  • 24 篇 institute of med...
  • 21 篇 institute of ima...
  • 19 篇 image processing...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 13 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 9 篇 institute of ima...

作者

  • 174 篇 yang jie
  • 129 篇 jie yang
  • 57 篇 yuncai liu
  • 52 篇 huang xiaolin
  • 45 篇 pengfei shi
  • 23 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 wang lisheng
  • 19 篇 mou xuanqin
  • 19 篇 hong-bin shen
  • 19 篇 杨杰
  • 19 篇 kropatsch walter...
  • 17 篇 xuanqin mou
  • 17 篇 ping guo
  • 17 篇 yue zhou
  • 17 篇 gu yun
  • 16 篇 r. sablatnig
  • 16 篇 yu qiao
  • 16 篇 jian liu

语言

  • 1,279 篇 英文
  • 48 篇 中文
  • 24 篇 其他
检索条件"机构=Institute of Image Processing and Pattern recognition"
1348 条 记 录,以下是71-80 订阅
排序:
MDFlow: Unsupervised Optical Flow Learning by Reliable Mutual Knowledge Distillation
arXiv
收藏 引用
arXiv 2022年
作者: Kong, Lingtong Yang, Jie The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China
Recent works have shown that optical flow can be learned by deep networks from unlabelled image pairs based on brightness constancy assumption and smoothness prior. Current approaches additionally impose an augmentati... 详细信息
来源: 评论
ClusVPR: Efficient Visual Place recognition with Clustering-based Weighted Transformer
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Yifan Shamsolmoali, Pourya Yang, Jie The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China The School of Communication and Electrical Engineering East China Normal University Shanghai China
Visual place recognition (VPR) is a highly challenging task that has a wide range of applications, including robot navigation and self-driving vehicles. VPR is particularly difficult due to the presence of duplicate r... 详细信息
来源: 评论
Consensus-Based Distributed Kernel One-class Support Vector Machine for Anomaly Detection
Consensus-Based Distributed Kernel One-class Support Vector ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Tianyao Wang Fan He Ruikai Yang Zhixing Ye Xiaolin Huang Department of Automation Ningbo Artificial Intelligence Institute Shanghai Jiao Tong University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
One-class support vector machine (OCSVM) is one of the most widely used methods for learning from imbalanced data and has been successfully applied to numerous tasks such as anomaly detection. However, the study on de...
来源: 评论
Distilling Object Detectors with Global Knowledge
arXiv
收藏 引用
arXiv 2022年
作者: Tang, Sanli Zhang, Zhongyu Cheng, Zhanzhan Lu, Jing Xu, Yunlu Niu, Yi He, Fan Hikvision Research Institute Hangzhou China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
Knowledge distillation learns a lightweight student model that mimics a cumbersome teacher. Existing methods regard the knowledge as the feature of each instance or their relations, which is the instance-level knowled... 详细信息
来源: 评论
Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT images  1
收藏 引用
1st 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with 23rd International Conference on Medical image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Chen, Huai Chen, Haibin Wang, Lisheng Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Perception Vision Medical Technology Guangzhou China
The automatic segmentation of head and neck (H&N) tumor from FDG-PET and CT images is urgently needed for radiomics. In this paper, we propose a framework to segment H&N tumor automatically by fusing informati... 详细信息
来源: 评论
Semantic Transformation-Based Data Augmentation for Few-Shot Learning
SSRN
收藏 引用
SSRN 2023年
作者: Pan, Mei-Hong Xin, Hong-Yi Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiaotong University Shanghai200240 China
Few-shot learning (FSL) as a data-scarce method, aims to recognize instances of unseen classes solely based on very few examples. However, the model can easily become overfitted due to the biased distribution formed w... 详细信息
来源: 评论
Measurement of Imaging Indexes of Distal Radius based on deep Learning Key Point Detection  23
Measurement of Imaging Indexes of Distal Radius based on dee...
收藏 引用
9th International Conference on Computing and Artificial Intelligence, ICCAI 2023
作者: Jiachao, Niu Xin, Zhang Xufeng, Ling Yang, Jie Yin, Yong Shanghai Normal University Tianhua College AI School No. 1661 North Sheng Xin Road China Department of Orthopedics Jiading District Central Hospital Affiliated Shanghai University of Medicine &Health Sciences No.1 Chengbei Road China Institute of Image Processing and Pattern Recognition Shanghai Jiaotong University 800 Dongchuan Road 200240 China
The measurement of imaging indexes of distal radius is the basic work of diagnosis and recovery evaluation. Due to the problems of large morphological differences and insufficient clarity in radial images, the accurat... 详细信息
来源: 评论
3D Vessel Segmentation with Limited Guidance of 2D Structure-agnostic Vessel Annotations
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Huai Wang, Xiuying Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science The University of Sydney SydneyNSW2006 Australia
Delineating 3D blood vessels is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Supervised deep learning has demonstrated its ... 详细信息
来源: 评论
Pick the Best Pre-trained Model: Towards Transferability Estimation for Medical image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Yuncheng Wei, Meng He, Junjun Yang, Jie Ye, Jin Gu, Yun Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shanghai AI Lab Shanghai China
Transfer learning is a critical technique in training deep neural networks for the challenging medical image segmentation task that requires enormous resources. With the abundance of medical image data, many research ... 详细信息
来源: 评论
Data Imputation by Pursuing Better Classification: A Supervised Kernel-Based Method
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ruikai He, Fan He, Mingzhen Wang, Kaijie Huang, Xiaolin Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University 800 Dongchuan RD Shanghai200240 China STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Oude Markt 13 Leuven3000 Belgium
Data imputation, the process of filling in missing feature elements for incomplete data sets, plays a crucial role in data-driven learning. A fundamental belief is that data imputation is helpful for learning performa... 详细信息
来源: 评论