咨询与建议

限定检索结果

文献类型

  • 278 篇 会议
  • 104 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 389 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 163 篇 计算机科学与技术...
    • 136 篇 软件工程
    • 49 篇 生物医学工程(可授...
    • 48 篇 信息与通信工程
    • 40 篇 光学工程
    • 39 篇 控制科学与工程
    • 35 篇 生物工程
    • 30 篇 机械工程
    • 27 篇 电气工程
    • 23 篇 电子科学与技术(可...
    • 16 篇 仪器科学与技术
    • 16 篇 化学工程与技术
    • 6 篇 建筑学
    • 5 篇 力学(可授工学、理...
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
  • 141 篇 理学
    • 82 篇 数学
    • 45 篇 物理学
    • 39 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 15 篇 化学
    • 15 篇 系统科学
  • 74 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 38 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 21 篇 医学
    • 18 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 6 篇 教育学
    • 6 篇 教育学
  • 6 篇 农学
    • 6 篇 作物学
  • 5 篇 艺术学
  • 3 篇 法学
  • 2 篇 经济学
  • 1 篇 文学

主题

  • 47 篇 pattern recognit...
  • 31 篇 image processing
  • 26 篇 image segmentati...
  • 22 篇 shape
  • 21 篇 feature extracti...
  • 16 篇 image analysis
  • 16 篇 image reconstruc...
  • 14 篇 support vector m...
  • 14 篇 automation
  • 13 篇 computer vision
  • 12 篇 cameras
  • 11 篇 image edge detec...
  • 10 篇 image enhancemen...
  • 10 篇 robustness
  • 9 篇 computer science
  • 9 篇 lighting
  • 9 篇 mobile robots
  • 9 篇 computer graphic...
  • 8 篇 semantics
  • 8 篇 algorithm design...

机构

  • 31 篇 institute of ima...
  • 26 篇 institute of ima...
  • 19 篇 image processing...
  • 14 篇 institute of ima...
  • 13 篇 institute of ima...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 9 篇 pattern recognit...
  • 8 篇 school of comput...
  • 7 篇 department of au...
  • 6 篇 college of math ...
  • 6 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 6 篇 institute of ima...
  • 5 篇 fujian key labor...
  • 5 篇 state key labora...
  • 5 篇 school of comput...
  • 4 篇 school of comput...

作者

  • 25 篇 yang jie
  • 17 篇 kropatsch walter...
  • 15 篇 ping guo
  • 13 篇 r. sablatnig
  • 13 篇 sablatnig robert
  • 10 篇 fan zhang
  • 10 篇 gong chen
  • 10 篇 robert sablatnig
  • 9 篇 haxhimusa yll
  • 9 篇 yang yang
  • 9 篇 bischof horst
  • 8 篇 jie yang
  • 8 篇 zhengwei guo
  • 8 篇 guo ping
  • 8 篇 zhang fan
  • 7 篇 h. bischof
  • 7 篇 jie huang
  • 7 篇 m. kampel
  • 6 篇 burkhardt hans
  • 6 篇 wang da-han

语言

  • 370 篇 英文
  • 15 篇 其他
  • 4 篇 中文
检索条件"机构=Institute of Image Recognition and Computer"
389 条 记 录,以下是71-80 订阅
排序:
Decoupling Respiratory and Angular Variation in Rotational X-ray Scans Using a Prior Bilinear Model  40th
Decoupling Respiratory and Angular Variation in Rotational X...
收藏 引用
40th German Conference on Pattern recognition, GCPR 2018
作者: Geimer, Tobias Keall, Paul Breininger, Katharina Caillet, Vincent Dunbar, Michelle Bert, Christoph Maier, Andreas Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department of Radiation Oncology Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany ACRF Image X Institute The University of Sydney Sydney Australia
Data-driven respiratory signal extraction from rotational X-ray scans is a challenge as angular effects overlap with respiration-induced change in the scene. In this paper, we use the linearity of the X-ray transform ... 详细信息
来源: 评论
image synthesis with adversarial networks: A comprehensive survey and case studies
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Granger, Eric Zhou, Huiyu Wang, Ruili Emre Celebi, M. Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Laboratoire d’imagerie De vision et d’intelligence artificielle École de technologie supérieure Montreal Canada School of Informatics University of Leicester United Kingdom School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Computer Science University of Central Arkansas United States
Generative Adversarial Networks (GANs) have been extremely successful in various application domains such as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to a ... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Prediction of σ54 promoters in prokaryotes based on SVM–Adaboost
Prediction of σ54 promoters in prokaryotes based on SVM–Ad...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yongxian Fan Qingqi Zhu Chengwei Lv Xianyong Pan School of Computer and Information Security Guilin University of Electronic Technology Guilin Guangxi Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
σ 54 promoters are responsible for transcriptional carbon and nitrogen in prokaryotes. However, it is costly and difficult by experimental identification of them, especially in the postgenomic era with avalanche of ... 详细信息
来源: 评论
Web Page Classification Algorithm Based on Semi-Supervised Support Vector Machine
Web Page Classification Algorithm Based on Semi-Supervised S...
收藏 引用
IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC)
作者: Wenqing Huang Hui You School of Information The Institute of computer vision image processing and pattern recognition acceptable Hangzhou China
Most web page classification algorithms are learning algorithms under the single-instance single-label framework. Multi-Instance Multi-Label learning is a new machine learning framework. MIMLSVM+ algorithm, using dege... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Deep model-based feature extraction for predicting protein subcellular localizations from bio-images
收藏 引用
Frontiers of computer Science 2017年 第2期11卷 243-252页
作者: Wei SHAO Yi DING Hong-Bin SHEN Daoqiang ZHANG School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai 200240 China
Protein subcellular localization prediction is im- portant for studying the function of proteins. Recently, as significant progress has been witnessed in the field of mi- croscopic imaging, automatically determining t... 详细信息
来源: 评论
A regularization approach for instance-based superset label learning
arXiv
收藏 引用
arXiv 2019年
作者: Gong, Chen Liu, Tongliang Tang, Yuanyan Yang, Jian Yang, Jie Tao, Dacheng School of Computer Science and Engineering Nanjing University of Science and Technology Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University School of Software Faculty of Engineering and Information Technology University of Technology Sydney UltimoNSW2007 Australia Faculty of Science and Technology University of Macau Macau999078 China College of Computer Science Chongqing University Chongqing400000 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney J12/318 Cleveland St DarlingtonNSW2008 Australia
Different from the traditional supervised learning in which each training example has only one explicit label, Superset Label Learning (SLL) refers to the problem that a training example can be associated with a set o... 详细信息
来源: 评论
An improved convex programming model for the inverse problem in intensity-modulated radiation therapy
收藏 引用
International Journal of Performability Engineering 2018年 第5期14卷 871-884页
作者: Lan, Yihua Zhang, Xingang Zhang, Jianyang Wang, Yang Hung, Chih-Cheng School of Computer and Information Technology Nanyang Normal University Nanyang473061 China Institute of Image Processing and Pattern Recognition Nanyang Normal University Nanyang473061 China Radiology Department Central Hospital of Nanyang Nanyang473061 China Laboratory for Machine Vision and Security Research College of Computing and Software Engineering Kennesaw State University - Marietta Campus 1100 South Marietta Parkway MariettaGA30067-2896 United States
Intensity modulated radiation therapy technology (IMRT) is one of the main approaches in cancer treatment because it can guarantee the killing of cancer cells while optimally protecting normal tissue from complication... 详细信息
来源: 评论
Robust Visual Tracking Revisited: From Correlation Filter to Template Matching
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Fanghui Gong, Chen Huang, Xiaolin Zhou, Tao Yang, Jie Tao, Dacheng Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China UBTECH Sydney Artificial Intelligence Centre School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney 6 Cleveland St DarlingtonNSW2008 Australia
In this paper, we propose a novel matching based tracker by investigating the relationship between template matching and the recent popular correlation filter based trackers (CFTs). Compared to the correlation operati... 详细信息
来源: 评论