咨询与建议

限定检索结果

文献类型

  • 54 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 63 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 42 篇 工学
    • 25 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 9 篇 信息与通信工程
    • 8 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 电气工程
    • 7 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 2 篇 仪器科学与技术
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 建筑学
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术
  • 20 篇 理学
    • 8 篇 数学
    • 8 篇 物理学
    • 7 篇 生物学
    • 2 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 11 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 4 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 8 篇 pattern recognit...
  • 8 篇 computer vision
  • 7 篇 image segmentati...
  • 6 篇 image processing
  • 5 篇 computer graphic...
  • 5 篇 feature extracti...
  • 5 篇 shape
  • 4 篇 support vector m...
  • 4 篇 image edge detec...
  • 4 篇 lighting
  • 4 篇 biomedical imagi...
  • 4 篇 image recognitio...
  • 3 篇 image
  • 3 篇 mobile robots
  • 3 篇 algorithm design...
  • 3 篇 histograms
  • 2 篇 image enhancemen...
  • 2 篇 object detection
  • 2 篇 pixel
  • 2 篇 image texture an...

机构

  • 13 篇 institute of ima...
  • 6 篇 college of math ...
  • 6 篇 institute for co...
  • 5 篇 pattern recognit...
  • 4 篇 pattern recognit...
  • 4 篇 institute for co...
  • 4 篇 institute of ima...
  • 2 篇 pattern recognit...
  • 2 篇 centre for image...
  • 2 篇 institute of ima...
  • 2 篇 computer vision ...
  • 2 篇 department of in...
  • 2 篇 college of mecha...
  • 2 篇 institute of aut...
  • 2 篇 computer vision ...
  • 2 篇 school of inform...
  • 1 篇 computer science...
  • 1 篇 and the ieee com...
  • 1 篇 key laboratory o...
  • 1 篇 pattern recognit...

作者

  • 7 篇 bischof horst
  • 6 篇 h. bischof
  • 6 篇 luya wang
  • 6 篇 weixing wang
  • 4 篇 g. langs
  • 4 篇 langs georg
  • 3 篇 li xi
  • 3 篇 liu xiangbin
  • 3 篇 xi li
  • 3 篇 jiang shao-hua
  • 3 篇 xiangbin liu
  • 2 篇 m. reiter
  • 2 篇 chanda sukalpa
  • 2 篇 jogan matjaž
  • 2 篇 timofte radu
  • 2 篇 yang hui-jun
  • 2 篇 abhinav dhall
  • 2 篇 wildenauer horst
  • 2 篇 doermann david
  • 2 篇 he dong-jian

语言

  • 62 篇 英文
  • 1 篇 其他
检索条件"机构=Institute of Image Recognition and Computer Vision"
63 条 记 录,以下是1-10 订阅
排序:
NTIRE 2023 image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
One-Shot Learning-Based Handwritten Word recognition  5th
One-Shot Learning-Based Handwritten Word Recognition
收藏 引用
5th Asian Conference on Pattern recognition, ACPR 2019
作者: Chakrapani Gv, Asish Chanda, Sukalpa Pal, Umapada Doermann, David Electronics and Communication Department Manipal University Jaipur Jaipur India Centre for Image Analysis Department of Information Technology Uppsala University Uppsala Sweden Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India University at Buffalo SUNY Buffalo United States
One-Shot and Few-shot Learning algorithms have emerged as techniques that can imitate a humans ability to learn from very few examples. This is an advantage over traditional deep networks which require a lot of traini... 详细信息
来源: 评论
LEDNet: Deep Network for Single image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
Face recognition - A one-shot learning perspective  15
Face recognition - A one-shot learning perspective
收藏 引用
15th International Conference on Signal image Technology and Internet Based Systems, SISITS 2019
作者: Chanda, Sukalpa Gv, Asish Chakrapani Brun, Anders Hast, Anders Pal, Umapada Doermann, David Department of Information Technology Østfold University College Norway Computer Vision and Pattern Recognition Unit Indian Statistical Institute India Centre for Image Analysis Uppsala University Sweden Computer Science and Engineering University at Buffalo United States
Ability to learn from a single instance is something unique to the human species and One-shot learning algorithms try to mimic this special capability. On the other hand, despite the fantastic performance of Deep Lear... 详细信息
来源: 评论
Web Page Classification Algorithm Based on Semi-Supervised Support Vector Machine  2
Web Page Classification Algorithm Based on Semi-Supervised S...
收藏 引用
2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018
作者: Huang, Wenqing You, Hui Zhejiang Sci-Tech University Institute of Computer Vision Image Processing and Pattern Recognition Acceptable School of Information Hangzhou China
Most web page classification algorithms are learning algorithms under the single-instance single-label framework. Multi-Instance Multi-Label learning is a new machine learning framework. MIMLSVM+ algorithm, using dege... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Face recognition - A One-Shot Learning Perspective
Face Recognition - A One-Shot Learning Perspective
收藏 引用
International IEEE Conference on Signal-image Technologies and Internet-Based System
作者: Sukalpa Chanda Asish Chakrapani GV Anders Brun Anders Hast Umapada Pal David Doermann Department of Information Technology Østfold University College Norway Computer Vision and Pattern Recognition Unit Indian Statistical Institute India Centre for Image Analysis Uppsala University Sweden Computer Science and Engineering University at Buffalo USA
Ability to learn from a single instance is something unique to the human species and One-shot learning algorithms try to mimic this special capability. On the other hand, despite the fantastic performance of Deep Lear... 详细信息
来源: 评论
image synthesis with adversarial networks: A comprehensive survey and case studies
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Granger, Eric Zhou, Huiyu Wang, Ruili Emre Celebi, M. Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Laboratoire d’imagerie De vision et d’intelligence artificielle École de technologie supérieure Montreal Canada School of Informatics University of Leicester United Kingdom School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Computer Science University of Central Arkansas United States
Generative Adversarial Networks (GANs) have been extremely successful in various application domains such as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to a ... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Web Page Classification Algorithm Based on Semi-Supervised Support Vector Machine
Web Page Classification Algorithm Based on Semi-Supervised S...
收藏 引用
IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC)
作者: Wenqing Huang Hui You School of Information The Institute of computer vision image processing and pattern recognition acceptable Hangzhou China
Most web page classification algorithms are learning algorithms under the single-instance single-label framework. Multi-Instance Multi-Label learning is a new machine learning framework. MIMLSVM+ algorithm, using dege... 详细信息
来源: 评论