咨询与建议

限定检索结果

文献类型

  • 635 篇 会议
  • 214 篇 期刊文献

馆藏范围

  • 849 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 539 篇 工学
    • 258 篇 控制科学与工程
    • 201 篇 计算机科学与技术...
    • 189 篇 软件工程
    • 185 篇 机械工程
    • 98 篇 仪器科学与技术
    • 81 篇 生物工程
    • 75 篇 生物医学工程(可授...
    • 64 篇 信息与通信工程
    • 50 篇 电气工程
    • 42 篇 电子科学与技术(可...
    • 37 篇 光学工程
    • 32 篇 化学工程与技术
    • 30 篇 力学(可授工学、理...
    • 29 篇 航空宇航科学与技...
    • 27 篇 交通运输工程
    • 25 篇 土木工程
    • 21 篇 材料科学与工程(可...
    • 21 篇 动力工程及工程热...
    • 16 篇 建筑学
    • 15 篇 安全科学与工程
  • 251 篇 理学
    • 116 篇 数学
    • 85 篇 生物学
    • 76 篇 物理学
    • 33 篇 系统科学
    • 26 篇 统计学(可授理学、...
    • 23 篇 化学
  • 84 篇 管理学
    • 65 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 40 篇 医学
    • 37 篇 临床医学
  • 17 篇 农学
  • 5 篇 法学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 32 篇 robots
  • 26 篇 robot sensing sy...
  • 24 篇 legged locomotio...
  • 23 篇 manipulators
  • 19 篇 trajectory
  • 18 篇 mobile robots
  • 17 篇 force
  • 17 篇 feature extracti...
  • 17 篇 service robots
  • 16 篇 three-dimensiona...
  • 16 篇 robot kinematics
  • 14 篇 training
  • 13 篇 exoskeletons
  • 11 篇 reinforcement le...
  • 11 篇 planning
  • 11 篇 estimation
  • 11 篇 mathematical mod...
  • 11 篇 robustness
  • 11 篇 heuristic algori...
  • 10 篇 safety

机构

  • 95 篇 institute of rob...
  • 84 篇 university of ch...
  • 59 篇 tianjin key labo...
  • 47 篇 tianjin key labo...
  • 47 篇 guangdong provin...
  • 39 篇 state key labora...
  • 33 篇 guangdong provin...
  • 25 篇 institute of rob...
  • 24 篇 institutes for r...
  • 23 篇 shenzhen institu...
  • 21 篇 shenzhen institu...
  • 20 篇 institute of int...
  • 18 篇 shenyang institu...
  • 17 篇 shenzhen college...
  • 17 篇 siat branch shen...
  • 16 篇 guangdong-hong k...
  • 15 篇 shenzhen institu...
  • 14 篇 institute of rob...
  • 14 篇 shenzhen institu...
  • 13 篇 guangdong provin...

作者

  • 66 篇 wu xinyu
  • 51 篇 xinyu wu
  • 32 篇 yongchun fang
  • 32 篇 jingtai liu
  • 32 篇 fang yongchun
  • 31 篇 xuebo zhang
  • 30 篇 xin zhao
  • 22 篇 liu jingtai
  • 20 篇 mingzhu sun
  • 20 篇 zhang xuebo
  • 19 篇 lei sun
  • 16 篇 qiang huang
  • 16 篇 qili zhao
  • 15 篇 yi zhengkun
  • 15 篇 xiao liang
  • 14 篇 shen linlin
  • 13 篇 jianda han
  • 13 篇 sun lei
  • 13 篇 xu sheng
  • 12 篇 aibin zhu

语言

  • 792 篇 英文
  • 32 篇 其他
  • 20 篇 中文
  • 5 篇 朝鲜文
检索条件"机构=Institute of Intelligent System and Robotics"
849 条 记 录,以下是41-50 订阅
排序:
EMG Based Rehabilitation Gesture Recognition Using DAE-CNN-LSTM Hybrid Model
EMG Based Rehabilitation Gesture Recognition Using DAE-CNN-L...
收藏 引用
2024 International Convention on Rehabilitation Engineering and Assistive Technology and World Rehabilitation Robot Convention, i-CREATE and WRRC 2024
作者: Cao, Wujing Guo, Xinqiang Zou, Yupeng Zhang, Shuo Luo, Mingxiang Kobsiriphat, Worawarit Wu, Xinyu Yin, Meng Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen518005 China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems China School of Mechanical Engineering China University of Petroleum China National Metal and Materials Technology Center Thailand
Stroke, as one of the leading causes of long-term disability globally, often results in motor impairments, particularly in the hands, significantly affecting patients' daily activities and causing profound psychol... 详细信息
来源: 评论
Mechanical Properties Inside Origami-Inspired Structures: An Overview
收藏 引用
Applied Mechanics Reviews 2025年 第1期77卷 011001页
作者: Yan, Peng Huang, Hailin Meloni, Marco Li, Bing Cai, Jianguo Department of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen518052 China Harbin Institute of Technology Shenzhen518052 China Key Laboratory of C & PC Structures of Ministry of Education National Prestress Engineering Research Center Southeast University Nanjing211189 China State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin150001 China Guangdong Provincial Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics Harbin Institute of Technology Shenzhen518052 China Key University Laboratory of Mechanism Machine Theory and Intelligent Unmanned Systems of Guangdong Habin Institute of Technology Shenzhen518052 China
In recent decades, origami has transitioned from a traditional art form into a systematic field of scientific inquiry, characterized by attributes such as high foldability, lightweight frameworks, diverse deformation ... 详细信息
来源: 评论
FT-TF: A 4D Long-Term Flight Trajectory Prediction Method Based on Transformer  42
FT-TF: A 4D Long-Term Flight Trajectory Prediction Method Ba...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Luo, Shijin Zhao, Minghui Zhao, Zhenjie Li, Lun Zhang, Shiyong Zhang, Xuebo Institute of Robotics and Automatic Information System College of Artificial Intelligence Nankai University Tianjin300350 China Tianjin Key Laboratory of Intelligent Robotics Nankai University Tianjin300350 China
The accurate prediction of target aircraft trajectory in the process of air combat can significantly improve the ability of aircraft to gain air superiority. Most of the trajectory prediction methods currently applied... 详细信息
来源: 评论
Reliable Observer-Based Control Against Sensor Failures for Fractional Order systems  42
Reliable Observer-Based Control Against Sensor Failures for ...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Li, Bingxin Zhang, Yujie Liu, Yaowei Zhao, Xin Nankai University Institute of Robotics and Automatic Information System The Tianjin Key Laboratory of Intelligent Robotics Tianjin300071 China Institute of Intelligence Technology and Robotic Systems Shenzhen Research Institute of Nankai University Shenzhen518083 China
In the paper, stability analysis of a class of incommensurate fractional-order systems (IFOS) is studied. These sufficient conditions are based on the linear matrix inequality (LMI) and straightforwardly used to solve... 详细信息
来源: 评论
A Distributed Task Allocation Algorithm for UAV Swarm Based on Local Information  4
A Distributed Task Allocation Algorithm for UAV Swarm Based ...
收藏 引用
4th International Symposium on Artificial Intelligence and intelligent Manufacturing, AIIM 2024
作者: Zhang, Junfu Liu, Chengjin Liu, Tao Jiang, Shiqi School of Mechanical Engineering Xi Hua University Chengdu China International Joint Institute of Robotics and Intelligent System School of Automation Chengdu University of Information Technology Chengdu China
This article proposes a distributed task allocation algorithm based on local information for unmanned aerial vehicle (UAV) swarm. A Part of the UAVs which are in the information exchange range participate in the local... 详细信息
来源: 评论
A Self-organized Coverage Algorithm for UAV Swarms based on Color Information Recognition  4
A Self-organized Coverage Algorithm for UAV Swarms based on ...
收藏 引用
4th International Symposium on Artificial Intelligence and intelligent Manufacturing, AIIM 2024
作者: Liu, Tao Zhang, Xiao Zhang, Junfu Jiang, Shiqi School of Mechanical Engineering Xi Hua University Chengdu China International Joint Institute of Robotics and Intelligent System School of Automation Chengdu University of Information Technology Chengdu China
This paper proposes a self-organized coverage method for unmanned aerial vehicle (UAV) swarm aimed at multi-area coverage. The proposed method attempts to take the color light emitted from the UVA as an important stat... 详细信息
来源: 评论
G²VD Planner: Efficient Motion Planning With Grid-Based Generalized Voronoi Diagrams
收藏 引用
IEEE Transactions on Automation Science and Engineering 2024年 22卷 3743-3755页
作者: Jian Wen Xuebo Zhang Qingchen Bi Hui Liu Jing Yuan Yongchun Fang Institute of Robotics and Automatic Information System College of Artificial Intelligence and Tianjin Key Laboratory of Intelligent Robotics Nankai University Tianjin China
In this paper, an efficient motion planning approach with grid-based generalized Voronoi diagrams (G2VD) is newly proposed for mobile robots. Different from existing approaches, the novelty of this work is twofold: 1)... 详细信息
来源: 评论
Learning Compliant Assembly Strategy From Demonstration
Learning Compliant Assembly Strategy From Demonstration
收藏 引用
2023 IEEE International Conference on Real-Time Computing and robotics, RCAR 2023
作者: Liu, Sheng Sheng, Juyi Ou, Yongsheng China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Provincial Key Laboratory of Robotics and Intelligent System Shenzhen518055 China
Compared with robots, humans can complete the different assembly tasks of parts flexibly and quickly. By teaching robots with human experiences, not only the industrial assembling tasks can be resolved, but also many ... 详细信息
来源: 评论
Reinforcement Learning Methods for Fixed-Wing Aircraft Control  9
Reinforcement Learning Methods for Fixed-Wing Aircraft Contr...
收藏 引用
9th International Conference on systems and Informatics, ICSAI 2023
作者: Li, Lun Zhang, Xuebo Wang, Yang Qian, Chenxu Zhao, Minghui Nankai University Institute of Robotics and Automatic Information System Tianjin Key Laboratory of Intelligent Robotics College of Artificial Intelligence Tianjin China Tianjin Municipal Data Management Center Tianjin China
In recent years, reinforcement learning (RL) has been widely researched for fixed-wing aircraft control, offering transformative potential for more adaptive, efficient, and autonomous flight operations. This paper pre... 详细信息
来源: 评论
TGCN-P: A TCN-GCN Network With Weighted Graph Constructed by Pearson Correlation Coefficient for Human Motion Tracking
TGCN-P: A TCN-GCN Network With Weighted Graph Constructed by...
收藏 引用
2023 IEEE International Conference on Real-Time Computing and robotics, RCAR 2023
作者: Li, Xiaoyu Wang, Jingnan Huang, Binhua Liu, Chengliang Liu, Yiwen Zhang, Yupo Yi, Zhengkun Wu, Xinyu Chinese Academy of Sciences Guangdong Provincial Key Laboratory of Robotics and Intelligent System Shenzhen Institute of Advanced Technology Shenzhen518055 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Siat Branch Shenzhen518055 China
Neural networks based on graph convolution are simple and effective network structures that have better performance in some fields compared to traditional convolutional networks. However, when graph convolution networ... 详细信息
来源: 评论