咨询与建议

限定检索结果

文献类型

  • 164 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 325 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 151 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 88 篇 控制科学与工程
    • 32 篇 生物工程
    • 30 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 16 篇 电气工程
    • 15 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
  • 119 篇 理学
    • 60 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 7 篇 农学
    • 7 篇 作物学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 reinforcement le...
  • 15 篇 three-dimensiona...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 39 篇 lamarr institute...
  • 29 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 machine learning...
  • 6 篇 humanoid robots ...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 the lamarr insti...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 cyrill stachniss
  • 15 篇 behley jens
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 10 篇 bennewitz maren
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin
  • 6 篇 mehta viraj

语言

  • 232 篇 英文
  • 93 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
325 条 记 录,以下是101-110 订阅
排序:
learning from SAM: Harnessing a Foundation Model for Sim2Real Adaptation by Regularization
arXiv
收藏 引用
arXiv 2023年
作者: Bonani, Mayara E. Schwarz, Max Behnke, Sven Computer Science VI University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany Center for Robotics University of Bonn Germany
Domain adaptation is especially important for robotics applications, where target domain training data is usually scarce and annotations are costly to obtain. We present a method for self-supervised domain adaptation ... 详细信息
来源: 评论
Florenz: Scaling Laws for Systematic Generalization in Vision-Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Spravil, Julian Houben, Sebastian Behnke, Sven Fraunhofer IAIS Germany University of Applied Sciences Bonn-Rhein-Sieg Bonn Germany University of Bonn Computer Science Institute VI Center for Robotics Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Cross-lingual transfer enables vision-language models (VLMs) to perform vision tasks in various languages with training data only in one language. Current approaches rely on large pre-trained multilingual language mod... 详细信息
来源: 评论
learning a Shape-Conditioned Agent for Purely Tactile In-Hand Manipulation of Various Objects
Learning a Shape-Conditioned Agent for Purely Tactile In-Han...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Johannes Pitz Lennart Röstel Leon Sievers Darius Burschka Berthold Bäuml Learning AI for Dextrous Robots Lab (***) Technical University of Munich Germany DLR Institute of Robotics & Mechatronics (German Aerospace Center) Machine Vision and Perception Group Technical University of Munich
Reorienting diverse objects with a multi-fingered hand is a challenging task. Current methods in robotic in-hand manipulation are either object-specific or require permanent supervision of the object state from visual... 详细信息
来源: 评论
Weisfeiler and leman go loopy: a new hierarchy for graph representational learning  24
Weisfeiler and leman go loopy: a new hierarchy for graph rep...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Raffaele Paolino Sohir Maskey Pascal Welke Gitta Kutyniok Department of Mathematics LMU Munich and Munich Center for Machine Learning (MCML) Department of Mathematics LMU Munich Faculty of Computer Science TU Wien Department of Mathematics LMU Munich and Munich Center for Machine Learning (MCML) and Institute for Robotics and Mechatronics DLR-German Aerospace Center and Department of Physics and Technology University of Tromsø
We introduce r-loopy Weisfeiler-Leman (r-ℓWL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, r-ℓMPNN, that can count cycles up to length r + 2. Most notably, we show that r-ℓWL can co...
来源: 评论
Towards Map-Agnostic Policies for Adaptive Informative Path Planning
arXiv
收藏 引用
arXiv 2024年
作者: Rückin, Julius Morilla-Cabello, David Stachniss, Cyrill Montijano, Eduardo Popović, Marija Center for Robotics University of Bonn Germany DIISI3A Universidad de Zaragoza Spain MAVLab TU Delft Netherlands Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Robots are frequently tasked to gather relevant sensor data in unknown terrains. A key challenge for classical path planning algorithms used for autonomous information gathering is adaptively replanning paths online a... 详细信息
来源: 评论
HyenaPixel: Global Image Context with Convolutions
arXiv
收藏 引用
arXiv 2024年
作者: Spravil, Julian Houben, Sebastian Behnke, Sven Fraunhofer IAIS Germany University of Applied Sciences Bonn-Rhein-Sieg Germany University of Bonn Computer Science Institute VI Center for Robotics Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
In computer vision, a larger effective receptive field (ERF) is associated with better performance. While attention natively supports global context, its quadratic complexity limits its applicability to tasks that ben... 详细信息
来源: 评论
Safe Leaf Manipulation for Accurate Shape and Pose Estimation of Occluded Fruits
arXiv
收藏 引用
arXiv 2024年
作者: Yao, Shaoxiong Pan, Sicong Bennewitz, Maren Hauser, Kris University of Illinois at Urbana-Champaign IL United States Humanoid Robots Lab University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence The Center for Robotics Bonn Germany
Fruit monitoring plays an important role in crop management, and rising global fruit consumption combined with labor shortages necessitates automated monitoring with robots. However, occlusions from plant foliage ofte... 详细信息
来源: 评论
WEDGE: A multi-weather autonomous driving dataset built from generative vision-language models
arXiv
收藏 引用
arXiv 2023年
作者: Marathe, Aboli Ramanan, Deva Walambe, Rahee Kotecha, Ketan Machine Learning Department Carnegie Mellon University PA United States Robotics Institute Carnegie Mellon University PA United States India India
The open road poses many challenges to autonomous perception, including poor visibility from extreme weather conditions. Models trained on good-weather datasets frequently fail at detection in these out-of-distributio... 详细信息
来源: 评论
Censor-aware Semi-supervised learning for Survival Time Prediction from Medical Images
arXiv
收藏 引用
arXiv 2022年
作者: Aragonés, Renato Hermoza Maicas, Gabriel Nascimento, Jacinto C. Carneiro, Gustavo Australian Institute for Machine Learning The University of Adelaide Australia Institute for Systems and Robotics Instituto Superior Tecnico Portugal
Survival time prediction from medical images is important for treatment planning, where accurate estimations can improve healthcare quality. One issue affecting the training of survival models is censored data. Most o... 详细信息
来源: 评论
Accurate Kinematic Modeling using Autoencoders on Differentiable Joints
Accurate Kinematic Modeling using Autoencoders on Differenti...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Nikolas Wilhelm Sami Haddadin Rainer Burgkart Patrick Van Der Smagt Maximilian Karl Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich Germany Department of Orthopedics and Sports Orthopedics Klinikum Rechts der Isar School of Medicine Munich Germany Volkswagen Group Machine Learning Research Lab Munich Germany
In robotics and biomechanics, accurately determining joint parameters and computing the corresponding forward and inverse kinematics are critical yet often challenging tasks, especially when dealing with highly indivi... 详细信息
来源: 评论