咨询与建议

限定检索结果

文献类型

  • 164 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 325 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 151 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 88 篇 控制科学与工程
    • 32 篇 生物工程
    • 30 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 16 篇 电气工程
    • 15 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
  • 119 篇 理学
    • 60 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 7 篇 农学
    • 7 篇 作物学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 reinforcement le...
  • 15 篇 three-dimensiona...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 39 篇 lamarr institute...
  • 29 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 machine learning...
  • 6 篇 humanoid robots ...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 the lamarr insti...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 cyrill stachniss
  • 15 篇 behley jens
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 10 篇 bennewitz maren
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin
  • 6 篇 mehta viraj

语言

  • 232 篇 英文
  • 93 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
325 条 记 录,以下是131-140 订阅
排序:
Preventing Unconstrained CBF Safety Filters Caused by Invalid Relative Degree Assumptions
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhou, Siqi Schoellig, Angela P. Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Control barrier function (CBF)-based safety filters are used to certify and modify potentially unsafe control inputs to a system such as those provided by a reinforcement learning agent or a non-expert user. In this c... 详细信息
来源: 评论
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhang, Yanni Römer, Ralf Naimer, Jack Staykov, Nikola Zhou, Siqi Schoellig, Angela P. Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Ensuring safe interactions in human-centric environments requires robots to understand and adhere to constraints recognized by humans as "common sense" (e.g., "moving a cup of water above a laptop is un... 详细信息
来源: 评论
Multi-Alpha Soft Actor-Critic: Overcoming Stochastic Biases in Maximum Entropy Reinforcement learning
Multi-Alpha Soft Actor-Critic: Overcoming Stochastic Biases ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Conor Igoe Swapnil Pande Siddarth Venkatraman Jeff Schneider Machine Learning Department School of Computer Science Carnegie Mellon University Pittsburgh PA United States Robotics Institute School of Computer Science Carnegie Mellon University Pittsburgh PA United States
The successful application of robotic control requires intelligent decision-making to handle the long tail of complex scenarios that arise in real-world environments. Recently, Deep Reinforcement learning (DRL) has pr...
来源: 评论
learning Barrier-Certified Polynomial Dynamical Systems for Obstacle Avoidance with Robots
Learning Barrier-Certified Polynomial Dynamical Systems for ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Martin Schonger Hugo T. M. Kussaba Lingyun Chen Luis Figueredo Abdalla Swikir Aude Billard Sami Haddadin Munich Institute of Robotics and Machine Intelligence (MIRMI) Technical University of Munich (TUM) Germany School of Computer Science University of Nottingham UK Omar Al-Mukhtar University (OMU) Albaida Libya Learning Algorithms and Systems Laboratory EPFL Switzerland
Established techniques that enable robots to learn from demonstrations are based on learning a stable dynamical system (DS). To increase the robots’ resilience to perturbations during tasks that involve static obstac... 详细信息
来源: 评论
GO-VMP: Global Optimization for View Motion Planning in Fruit Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Jose, Allen Isaac Pan, Sicong Zaenker, Tobias Menon, Rohit Houben, Sebastian Bennewitz, Maren Bonn-Rhein-Sieg University of Applied Sciences Germany Humanoid Robots Lab University of Bonn Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Germany Humanoid Robots Lab University of Bonn Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Automating labor-intensive tasks such as crop monitoring with robots is essential for enhancing production and conserving resources. However, autonomously monitoring horticulture crops remains challenging due to their... 详细信息
来源: 评论
Innovative Application of Socio-Cultural-System-Inspired Algorithms in IoT and Smart Systems Optimization  5
Innovative Application of Socio-Cultural-System-Inspired Alg...
收藏 引用
5th IEEE International Conference on Electro-Computing Technologies for Humanity, NIGERCON 2024
作者: Ikpo, Chibueze V. Chinedu, Paschal Uchenna Ogbimi, Emuejevoke Francis Ikegwu, Anayor Chukwu Nweke, Henry Friday Nwankwo, Wilson Veritas University Department of Software Engineering Bwari Abuja Nigeria Delta State University of Science and Technology Department of Information Systems and Technology Ozoro Nigeria David Umahi Federal University of Health Sciences International Institute for Machine Learning Robotics and Ai Research Ebonyi Nigeria Delta State University of Science and Technology Department of Cyber Security Ozoro Nigeria
The Odigbo Metaheuristic Optimization Algorithm (OMOA), inspired by the strategic and goal-oriented behaviors of the Ndigbo tribe in Africa, offers a novel approach to solving complex scientific and engineering proble... 详细信息
来源: 评论
A deep learning approach for cultural heritage building classification using transfer learning and data augmentation
收藏 引用
Journal of Cultural Heritage 2025年 74卷 214-224页
作者: André Luiz Carvalho Ottoni Lara Toledo Cordeiro Ottoni Machine Learning and Robotics Research Group (MLBots) Department of Computing Federal University of Ouro Preto (UFOP) Campus Morro do Cruzeiro Ouro Preto 35400-000 Minas Gerais Brazil Department of Industrial Automation Federal Institute of Minas Gerais (IFMG) Campus Ouro Preto Ouro Preto 35400-000 Minas Gerais Brazil
The detection of architectural components in historic buildings is essential for digital documentation and the conservation process of cultural heritage. In this regard, recent studies have explored artificial intelli...
来源: 评论
Functional TMS Mapping During Sensorimotor Integration Task  5
Functional TMS Mapping During Sensorimotor Integration Task
收藏 引用
5th International Conference Neurotechnologies and Neurointerfaces, CNN 2023
作者: Udoratina, Anna Grigorev, Nikita Savosenkov, Andrey Ermolaev, Denis Maksimenko, Vladimir Gordleeva, Susanna Lobachevsky State University of Nizhny Novgorod Neurotechnology Department Nizhny Novgorod Russia Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Lobachevsky State University of Nizhny Novgorod Mathematics and Mechanics Department Nizhny Novgorod Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia Neuroscience Research Institute Samara State Medical University Samara Russia
In the present research, we studied spatiotemporal influence of a single-pulse TMS on the process of sensorimotor integration. We considered how real and sham stimulation of the left or right premotor, motor or sensor... 详细信息
来源: 评论
Exploration via planning for information about the optimal trajectory  22
Exploration via planning for information about the optimal t...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Viraj Mehta Ian Char Joseph Abbate Rory Conlin Mark D. Boyer Stefano Ermon Jeff Schneider Willie Neiswanger Robotics Institute Machine Learning Department Carnegie Mellon University Princeton University Princeton Plasma Physics Laboratory Computer Science Department Stanford University
Many potential applications of reinforcement learning (RL) are stymied by the large numbers of samples required to learn an effective policy. This is especially true when applying RL to real-world control tasks, e.g. ...
来源: 评论
Toward Accurate Online Multi-target Multi-camera Tracking in Real-time
Toward Accurate Online Multi-target Multi-camera Tracking in...
收藏 引用
European Signal Processing Conference (EUSIPCO)
作者: Andreas Specker Jürgen Beyerer Fraunhofer IOSB Karlsruhe Germany Vision and Fusion Lab Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology (KIT) Karlsruhe Germany Fraunhofer Center for Machine Learning Karlsruhe Germany
Multi-target multi-camera tracking is the task of determining the trajectories of objects within a network of cameras. Besides many others, it is a crucial task, e.g., in traffic analysis or law enforcement. Current r... 详细信息
来源: 评论