咨询与建议

限定检索结果

文献类型

  • 164 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 325 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 151 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 88 篇 控制科学与工程
    • 32 篇 生物工程
    • 30 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 16 篇 电气工程
    • 15 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
  • 119 篇 理学
    • 60 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 7 篇 农学
    • 7 篇 作物学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 reinforcement le...
  • 15 篇 three-dimensiona...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 39 篇 lamarr institute...
  • 29 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 machine learning...
  • 6 篇 humanoid robots ...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 the lamarr insti...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 cyrill stachniss
  • 15 篇 behley jens
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 10 篇 bennewitz maren
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin
  • 6 篇 mehta viraj

语言

  • 232 篇 英文
  • 93 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
325 条 记 录,以下是151-160 订阅
排序:
Self-Supervised learning of Scene-Graph Representations for Robotic Sequential Manipulation Planning  4
Self-Supervised Learning of Scene-Graph Representations for ...
收藏 引用
4th Conference on Robot learning, CoRL 2020
作者: Nguyen, Son-Tung Oguz, Ozgur S. Hartmann, Valentin N. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Learning and Intelligent Systems Group TU Berlin Germany
We present a self-supervised representation learning approach for visual reasoning and integrate it into a nonlinear program formulation for motion optimization to tackle sequential manipulation tasks. Such problems h... 详细信息
来源: 评论
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
arXiv
收藏 引用
arXiv 2023年
作者: Zheng, Kaizhong Yu, Shujian Chen, Badong National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi’an China Department of Computer Science Vrije Universiteit Amsterdam Amsterdam Netherlands Machine Learning Group UiT - Arctic University of Norway Tromsø Norway
There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which, in turn, also motivates an urgent need for psychiatrists to fully understand the deci... 详细信息
来源: 评论
Implementing machine learning Approaches to Identify Fabricated Profiles
Implementing Machine Learning Approaches to Identify Fabrica...
收藏 引用
Science, Technology, Engineering and Management (ICSTEM), International Conference on
作者: George Princess T Kothai G Heartlin Maria H Kayalvizhi Rajadurai Ajai MR Department of ADS St. Joseph's Institute of Technology Chennai India Department of CSE (Artificial Intelligence and Machine Learning) KPR Institute of Engineering and Technology Coimbatore Department of ECE Rajalakshmi Engineering College Chennai India Dept.of Robotics and Automation Easwari Engineering College Chennai India Department of IT St. Joseph's Institute of Technology Chennai India
The increase of fake news is a serious challenge in today's digital world. During the period of COVID-19 there is a lot of fake news about the COVID-19 virus has been spreading around the world, and it has also be... 详细信息
来源: 评论
Deep Convolutional Neural Networks with Zero-Padding: Feature Extraction and learning
arXiv
收藏 引用
arXiv 2023年
作者: Han, Zhi Liu, Baichen Lin, Shao-Bo Zhou, Ding-Xuan State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China Center of Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an China School of Mathematics and Statistics University of Sydney SydneyNSW2006 Australia
This paper studies the performance of deep convolutional neural networks (DCNNs) with zero-padding in feature extraction and learning. After verifying the roles of zero-padding in enabling translation-equivalence, and... 详细信息
来源: 评论
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Tuscher Julian Hörz Danny Driess Marc Toussaint sereact Machine Learning and Robotics Lab University of Stuttgart Max-Planck Institute for Intelligent Systems Stuttgart Learning and Intelligent Systems TU Berlin
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
Facial Expression Recognition Model Depending on Optimized Support Vector machine
收藏 引用
Computers, Materials & Continua 2023年 第7期76卷 499-515页
作者: Amel Ali Alhussan Fatma M.Talaat El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar Department of Computer Sciences College of Computer and Information SciencesPrincess Nourah bint Abdulrahman UniversityP.O.Box 84428Riyadh11671Saudi Arabia Machine Learning&Information Retrieval Department Faculty of Artificial IntelligenceKafrelsheikh UniversityKafrelsheikh33516Egypt Department of Communications and Electronics Delta Higher Institute of Engineering and TechnologyMansoura35111Egypt Department of Computer Science College of Computing and Information TechnologyShaqra University11961Saudi Arabia Department of Computer Science Faculty of Computer and Information SciencesAin Shams UniversityCairo11566Egypt Computer Engineering and Control Systems Department Faculty of EngineeringMansoura UniversityMansoura35516Egypt Robotics and Intelligent Machines Department Faculty of Artificial IntelligenceKafrelsheikh UniversityKafrelsheikh33516Egypt
In computer vision,emotion recognition using facial expression images is considered an important research *** learning advances in recent years have aided in attaining improved results in this *** to recent studies,mu... 详细信息
来源: 评论
Context-Based Meta Reinforcement learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Shokry, Ahmed Gomaa, Walid Zaenker, Tobias Dawood, Murad Menon, Rohit Maged, Shady A. Awad, Mohammed I. Bennewitz, Maren Humanoid Robots Lab Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany Cyber Physical Systems Lab Egypt Japan University of Science and Technology Alexandria Egypt Faculty of Engineering Alexandria University Alexandria Egypt Mechatronics Department Ain Shams University Cairo Egypt
Autonomous assembly is an essential capability for industrial and service robots, with Peg-in-Hole (PiH) insertion being one of the core tasks. However, PiH assembly in unknown environments is still challenging due to... 详细信息
来源: 评论
Co-Optimizing Robot, Environment, and Tool Design via Joint Manipulation Planning
Co-Optimizing Robot, Environment, and Tool Design via Joint ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Jung-Su Ha Ozgur S. Oguz Learning & Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany Machine Learning & Robotics Lab University of Stuttgart Germany
Existing work on sequential manipulation planning and trajectory optimization typically assumes the robot, environment and tools to be given. However, in particular in industrial applications, it is highly interesting... 详细信息
来源: 评论
learning Efficient Constraint Graph Sampling for Robotic Sequential Manipulation
Learning Efficient Constraint Graph Sampling for Robotic Seq...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Joaquim Ortiz-Haro Valentin N. Hartmann Ozgur S. Oguz Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论
Systematic Literature Review on Industry Revolution 4.0 to Predict Maintenance and Life Time of machines in Manufacturing Industry
Systematic Literature Review on Industry Revolution 4.0 to P...
收藏 引用
Artificial Intelligence and Smart Systems (ICAIS), International Conference on
作者: Sowmya P Sathish Kumar Ravichandran Rakshitha Department of Robotics and Artificial Intelligence NMAM Institute of Technology-Affiliated to NITTE(Deemed to be University) Nitte Karnataka India Department of Computer Science School of Engineering & Technology Christ University Bangalore Karnataka India Department of Artificial Intelligence and Machine Learning NMAM Institute of Technology-Affiliated to NITTE(Deemed to be University) Nitte Karnataka India
Industry 4.0 is digitized revolution for manufacturers or companies where in new technologies are imbibed into their production system for their day-to-day operations or activities. So that their overall economic need... 详细信息
来源: 评论