咨询与建议

限定检索结果

文献类型

  • 162 篇 期刊文献
  • 160 篇 会议

馆藏范围

  • 322 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 147 篇 计算机科学与技术...
    • 140 篇 软件工程
    • 86 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 15 篇 机械工程
    • 15 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 农业工程
  • 118 篇 理学
    • 59 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 10 篇 法学
    • 10 篇 社会学
  • 8 篇 农学
    • 8 篇 作物学
  • 3 篇 教育学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 three-dimensiona...
  • 13 篇 reinforcement le...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 38 篇 lamarr institute...
  • 28 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 the lamarr insti...
  • 6 篇 machine learning...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais
  • 5 篇 robotics institu...

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 behley jens
  • 16 篇 cyrill stachniss
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 7 篇 magistri federic...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin

语言

  • 259 篇 英文
  • 63 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
322 条 记 录,以下是21-30 订阅
排序:
3D LiDAR Mapping in Dynamic Environments Using a 4D Implicit Neural Representation
arXiv
收藏 引用
arXiv 2024年
作者: Zhong, Xingguang Pan, Yue Stachniss, Cyrill Behley, Jens Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Building accurate maps is a key building block to enable reliable localization, planning, and navigation of autonomous vehicles. We propose a novel approach for building accurate maps of dynamic environments utilizing... 详细信息
来源: 评论
Open-World Panoptic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Sodano, Matteo Magistri, Federico Behley, Jens Stachniss, Cyrill Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Perception is a key building block of autonomously acting vision systems such as autonomous vehicles. It is crucial that these systems are able to understand their surroundings in order to operate safely and robustly....
来源: 评论
Open-World Semantic Segmentation Including Class Similarity
arXiv
收藏 引用
arXiv 2024年
作者: Sodano, Matteo Magistri, Federico Nunes, Lucas Behley, Jens Stachniss, Cyrill Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Interpreting camera data is key for autonomously acting systems, such as autonomous vehicles. Vision systems that operate in real-world environments must be able to understand their surroundings and need the ability t... 详细信息
来源: 评论
Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian Optimization  37
Neural Latent Geometry Search: Product Manifold Inference vi...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: de Ocáriz Borde, Haitz Sáez López, Ismael Morales Posner, Ingmar Arroyo, Álvaro Dong, Xiaowen Oxford Robotics Institute University of Oxford United Kingdom Mathematical Institute University of Oxford United Kingdom Oxford-Man Institute University of Oxford United Kingdom Machine Learning Research Group University of Oxford United Kingdom
Recent research indicates that the performance of machine learning models can be improved by aligning the geometry of the latent space with the underlying data structure. Rather than relying solely on Euclidean space,... 详细信息
来源: 评论
Towards Conscious Service Robots
arXiv
收藏 引用
arXiv 2025年
作者: Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Deep learning’s success in perception, natural language processing, etc. inspires hopes for advancements in autonomous robotics. However, real-world robotics face challenges like variability, high-dimensional state s... 详细信息
来源: 评论
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
IEEE/SICE International Symposium on System Integration
作者: Svetlana Seliunina Artem Otelepko Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
Practical Considerations for Discrete-Time Implementations o...
收藏 引用
American Control Conference (ACC)
作者: Lukas Brunke Siqi Zhou Mingxuan Che Angela P. Schoellig Learning Systems and Robotics Lab Technical University of Munich Germany University of Toronto Canada Munich Institute of Robotics and Machine Intelligence (MIRMI) the University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
Epipolar Attention Field Transformers for Bird's Eye View Semantic Segmentation
Epipolar Attention Field Transformers for Bird's Eye View Se...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Christian Witte Jens Behley Cyrill Stachniss Marvin Raaijmakers CARIAD SE Germany Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Spatial understanding of the semantics of the surroundings is a key capability needed by autonomous cars to enable safe driving decisions. Recently, purely vision-based solutions have gained increasing research intere... 详细信息
来源: 评论
Is Data All That Matters? the Role of Control Frequency for learning-Based Sampled-Data Control of Uncertain Systems
Is Data All That Matters? the Role of Control Frequency for ...
收藏 引用
American Control Conference (ACC)
作者: Ralf Römer Lukas Brunke Siqi Zhou Angela P. Schoellig Learning Systems and Robotics Lab (***) School of Computation Information and Technology and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Technical University of Munich Germany
learning models or control policies from data has become a powerful tool to improve the performance of uncertain systems. While a strong focus has been placed on increasing the amount and quality of data to improve pe... 详细信息
来源: 评论
PID-inspired inductive biases for deep reinforcement learning in partially observable control tasks  23
PID-inspired inductive biases for deep reinforcement learnin...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Ian Char Jeff Schneider Machine Learning Department Carnegie Mellon University Pittsburgh PA Machine Learning Department Robotics Institute Carnegie Mellon University Pittsburgh PA
Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When ...
来源: 评论