咨询与建议

限定检索结果

文献类型

  • 164 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 325 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 151 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 88 篇 控制科学与工程
    • 32 篇 生物工程
    • 30 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 16 篇 电气工程
    • 15 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
  • 119 篇 理学
    • 60 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 7 篇 农学
    • 7 篇 作物学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 reinforcement le...
  • 15 篇 three-dimensiona...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 39 篇 lamarr institute...
  • 29 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 machine learning...
  • 6 篇 humanoid robots ...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 the lamarr insti...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 cyrill stachniss
  • 15 篇 behley jens
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 10 篇 bennewitz maren
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin
  • 6 篇 mehta viraj

语言

  • 232 篇 英文
  • 93 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
325 条 记 录,以下是41-50 订阅
排序:
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service robotics
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jonas Bode Bastian Pätzold Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven Autonomous Intelligent Systems group Computer Science Institute VI-Intelligent Systems and Robotics Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
MOTPose: Multi-object 6D Pose Estimation for Dynamic Video Sequences using Attention-based Temporal Fusion
arXiv
收藏 引用
arXiv 2024年
作者: Periyasamy, Arul Selvam Behnke, Sven the Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics the Center for Robotics the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Cluttered bin-picking environments are challenging for pose estimation models. Despite the impressive progress enabled by deep learning, single-view RGB pose estimation models perform poorly in cluttered dynamic envir... 详细信息
来源: 评论
DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Perception systems play a crucial role in autonomous driving, incorporating multiple sensors and corresponding computer vision algorithms. 3D LiDAR sensors are widely used to capture sparse point clouds of the vehicle... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Helin Cao Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
MOTPose: Multi-object 6D Pose Estimation for Dynamic Video Sequences using Attention-based Temporal Fusion
MOTPose: Multi-object 6D Pose Estimation for Dynamic Video S...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Arul Selvam Periyasamy Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Cluttered bin-picking environments are challenging for pose estimation models. Despite the impressive progress enabled by deep learning, single-view RGB pose estimation models perform poorly in cluttered dynamic envir... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient learning with Instance Segmentation to Grasp Arbitrary Objects
Grasp Anything: Combining Teacher-Augmented Policy Gradient ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Malte Mosbach Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
Epipolar Attention Field Transformers for Bird’s Eye View Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Witte, Christian Behley, Jens Stachniss, Cyrill Raaijmakers, Marvin CARIAD SE Germany Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Spatial understanding of the semantics of the surroundings is a key capability needed by autonomous cars to enable safe driving decisions. Recently, purely vision-based solutions have gained increasing research intere... 详细信息
来源: 评论
SAFE: Sensitivity-Aware Features for Out-of-Distribution Object Detection
SAFE: Sensitivity-Aware Features for Out-of-Distribution Obj...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Samuel Wilson Tobias Fischer Feras Dayoub Dimity Miller Niko Sünderhauf QUT Centre for Robotics Queensland University of Technology Australian Institute for Machine Learning University of Adelaide
We address the problem of out-of-distribution (OOD) detection for the task of object detection. We show that residual convolutional layers with batch normalisation produce Sensitivity-Aware FEatures (SAFE) that are co...
来源: 评论
Demonstration-Enhanced Adaptive Multi-Objective Robot Navigation
arXiv
收藏 引用
arXiv 2024年
作者: de Heuvel, Jorge Sethuraman, Tharun Bennewitz, Maren Humanoid Robots Lab University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics Bonn Germany
Preference-aligned robot navigation in human environments is typically achieved through learning-based approaches, utilizing user feedback or demonstrations for personalization. However, personal preferences are subje... 详细信息
来源: 评论