咨询与建议

限定检索结果

文献类型

  • 162 篇 期刊文献
  • 160 篇 会议

馆藏范围

  • 322 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 147 篇 计算机科学与技术...
    • 140 篇 软件工程
    • 86 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 15 篇 机械工程
    • 15 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 农业工程
  • 118 篇 理学
    • 59 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 10 篇 法学
    • 10 篇 社会学
  • 8 篇 农学
    • 8 篇 作物学
  • 3 篇 教育学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 three-dimensiona...
  • 13 篇 reinforcement le...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 38 篇 lamarr institute...
  • 28 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 the lamarr insti...
  • 6 篇 machine learning...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais
  • 5 篇 robotics institu...

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 behley jens
  • 16 篇 cyrill stachniss
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 7 篇 magistri federic...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin

语言

  • 259 篇 英文
  • 63 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
322 条 记 录,以下是51-60 订阅
排序:
ActiveGS: Active Scene Reconstruction using Gaussian Splatting
arXiv
收藏 引用
arXiv 2024年
作者: Jin, Liren Zhong, Xingguang Pan, Yue Behley, Jens Stachniss, Cyrill Popovic, Marija Center for Robotics University of Bonn Germany MAVLab TU Delft Netherlands Lamarr Institute for Machine Learning and Artificial Intelligence Germany
robotics applications often rely on scene reconstructions to enable downstream tasks. In this work, we tackle the challenge of actively building an accurate map of an unknown scene using an on-board RGB-D camera. We p... 详细信息
来源: 评论
EnQuery: Ensemble Policies for Diverse Query-Generation in Preference Alignment of Robot Navigation
arXiv
收藏 引用
arXiv 2024年
作者: de Heuvel, Jorge Seiler, Florian Bennewitz, Maren The Humanoid Robots Lab The Center for Robotics The University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany
To align mobile robot navigation policies with user preferences through reinforcement learning from human feedback (RLHF), reliable and behavior-diverse user queries are required. However, deterministic policies fail ... 详细信息
来源: 评论
Relative Representations: Topological and Geometric Perspectives
arXiv
收藏 引用
arXiv 2024年
作者: García-Castellanos, Alejandro Marchetti, Giovanni Luca Kragic, Danica Scolamiero, Martina Amsterdam Machine Learning Lab University of Amsterdam Netherlands Department of Mathematics KTH Royal Institute of Technology Sweden Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden
Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geomet... 详细信息
来源: 评论
EnQuery: Ensemble Policies for Diverse Query-Generation in Preference Alignment of Robot Navigation
EnQuery: Ensemble Policies for Diverse Query-Generation in P...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Jorge De Heuvel Florian Seiler Maren Bennewitz Humanoid Robots Lab and the Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany
To align mobile robot navigation policies with user preferences through reinforcement learning from human feedback (RLHF), reliable and behavior-diverse user queries are required. However, deterministic policies fail ... 详细信息
来源: 评论
MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion
arXiv
收藏 引用
arXiv 2024年
作者: Villar-Corrales, Angel Austermann, Moritz Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Autonomous systems, such as self-driving cars, rely on reliable semantic environment perception for decision making. Despite great advances in video semantic segmentation, existing approaches ignore important inductiv... 详细信息
来源: 评论
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service Robots using Foundation Models for Perception and Planning
arXiv
收藏 引用
arXiv 2024年
作者: Memmesheimer, Raphael Nogga, Jan Pätzold, Bastian Kruzhkov, Evgenii Bultmann, Simon Schreiber, Michael Bode, Jonas Karacora, Bertan Park, Juhui Savinykh, Alena Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
We present the approaches and contributions of the winning team NimbRo@Home at the RoboCup@Home 2024 competition in the Open Platform League held in Eindhoven, NL. Further, we describe our hardware setup and give an o... 详细信息
来源: 评论
One Policy to Run Them All: an End-to-end learning Approach to Multi-Embodiment Locomotion  8
One Policy to Run Them All: an End-to-end Learning Approach ...
收藏 引用
8th Conference on Robot learning, CoRL 2024
作者: Bohlinger, Nico Czechmanowski, Grzegorz Krupka, Maciej Kicki, Piotr Walas, Krzysztof Peters, Jan Tateo, Davide Department of Computer Science Technical University of Darmstadt Germany Institute of Robotics and Machine Intelligence Poznan University of Technology Poland Research Department: Systems AI for Robot Learning Germany IDEAS NCBR Warsaw Poland Hessian.AI Germany Centre for Cognitive Science Germany
Deep Reinforcement learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is... 详细信息
来源: 评论
Dexterous Pre-grasp Manipulation for Human-like Functional Categorical Grasping: Deep Reinforcement learning and Grasp Representations
arXiv
收藏 引用
arXiv 2023年
作者: Pavlichenko, Dmytro Behnke, Sven Group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Many objects, such as tools and household items, can be used only if grasped in a very specific way—grasped functionally. Often, a direct functional grasp is not possible, though. We propose a method for learning a d... 详细信息
来源: 评论
Radar Tracker: Moving Instance Tracking in Sparse and Noisy Radar Point Clouds
Radar Tracker: Moving Instance Tracking in Sparse and Noisy ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Matthias Zeller Daniel Casado Herraez Jens Behley Michael Heidingsfeld Cyrill Stachniss CARIAD SE and Center for Robotics University of Bonn Germany Center for Robotics University of Bonn Germany CARIAD SE Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Robots and autonomous vehicles should be aware of what happens in their surroundings. The segmentation and tracking of moving objects are essential for reliable path planning, including collision avoidance. We investi... 详细信息
来源: 评论
Multi-Step Model Predictive Safety Filters: Reducing Chattering by Increasing the Prediction Horizon
Multi-Step Model Predictive Safety Filters: Reducing Chatter...
收藏 引用
IEEE Conference on Decision and Control
作者: Federico Pizarro Bejarano Lukas Brunke Angela P. Schoellig the Learning Systems and Robotics Lab University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence Toronto Canada Technical University of Munich and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Germany
learning-based controllers have demonstrated su-perior performance compared to classical controllers in various tasks. However, providing safety guarantees is not trivial. Safety, the satisfaction of state and input c...
来源: 评论