咨询与建议

限定检索结果

文献类型

  • 162 篇 期刊文献
  • 160 篇 会议

馆藏范围

  • 322 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 147 篇 计算机科学与技术...
    • 140 篇 软件工程
    • 86 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 15 篇 机械工程
    • 15 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 农业工程
  • 118 篇 理学
    • 59 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 10 篇 法学
    • 10 篇 社会学
  • 8 篇 农学
    • 8 篇 作物学
  • 3 篇 教育学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 three-dimensiona...
  • 13 篇 reinforcement le...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 38 篇 lamarr institute...
  • 28 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 the lamarr insti...
  • 6 篇 machine learning...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais
  • 5 篇 robotics institu...

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 behley jens
  • 16 篇 cyrill stachniss
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 7 篇 magistri federic...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin

语言

  • 259 篇 英文
  • 63 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
322 条 记 录,以下是61-70 订阅
排序:
BonnBeetClouds3D: A Dataset Towards Point Cloud-Based Organ-Level Phenotyping of Sugar Beet Plants Under Real Field Conditions
BonnBeetClouds3D: A Dataset Towards Point Cloud-Based Organ-...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Elias Marks Jonas Bömer Federico Magistri Anurag Sag Jens Behley Cyrill Stachniss Center for Robotics University of Bonn Germany Institute of Sugar Beet Research Göttingen Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Agricultural production is facing challenges in the next decades induced by climate change and the need for more sustainability by reducing its impact on the environment. Advances in field management through robotic i... 详细信息
来源: 评论
Leveraging GNSS and Onboard Visual Data from Consumer Vehicles for Robust Road Network Estimation
Leveraging GNSS and Onboard Visual Data from Consumer Vehicl...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Balázs Opra Betty Le Dem Jeffrey M. Walls Dimitar Lukarski Cyrill Stachniss Woven by Toyota Inc University of Bonn Germany Center for Robotics University of Bonn Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Maps are essential for diverse applications, such as vehicle navigation and autonomous robotics. Both require spatial models for effective route planning and localization. This paper addresses the challenge of road gr... 详细信息
来源: 评论
FSRT: Facial Scene Representation Transformer for Face Reenactment from Factorized Appearance, Head-pose, and Facial Expression Features
arXiv
收藏 引用
arXiv 2024年
作者: Rochow, Andre Schwarz, Max Behnke, Sven Autonomous Intelligent Systems - Computer Science Institute VI and Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
The task of face reenactment is to transfer the head motion and facial expressions from a driving video to the appearance of a source image, which may be of a different person (cross-reenactment). Most existing method...
来源: 评论
Latent Action Priors for Locomotion with Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Hausdörfer, Oliver von Rohr, Alexander Lefort, Éric Schoellig, Angela P. The Technical University of Munich Germany TUM School of Computation Information and Technology Department of Computer Engineering Learning Systems and Robotics Lab Germany Munich Institute of Robotics and Machine Intelligence Germany
Deep Reinforcement learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are oft... 详细信息
来源: 评论
Efficiently Closing Loops in LiDAR-Based SLAM Using Point Cloud Density Maps
arXiv
收藏 引用
arXiv 2025年
作者: Gupta, Saurabh Guadagnino, Tiziano Mersch, Benedikt Trekel, Niklas Malladi, Meher V.R. Stachniss, Cyrill Center for Robotics University of Bonn Germany Department of Engineering Science University of Oxford United Kingdom Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Consistent maps are key for most autonomous mobile robots. They often use SLAM approaches to build such maps. Loop closures via place recognition help maintain accurate pose estimates by mitigating global drift. This ... 详细信息
来源: 评论
VARIATIONAL AUTOENCODERS IN THE PRESENCE OF LOW-DIMENSIONAL DATA: LANDSCAPE AND IMPLICIT BIAS  10
VARIATIONAL AUTOENCODERS IN THE PRESENCE OF LOW-DIMENSIONAL ...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Koehler, Frederic Mehta, Viraj Zhou, Chenghui Risteski, Andrej Department of Computer Science Stanford University United States Robotics Institute Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Variational Autoencoders (VAEs) are one of the most commonly used generative models, particularly for image data. A prominent difficulty in training VAEs is data that is supported on a lower dimensional manifold. Rece... 详细信息
来源: 评论
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
arXiv
收藏 引用
arXiv 2023年
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren The Humanoid Robots Lab University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence and the Center for Robotics Bonn Germany The Learning Systems and Robotics lab The Technical University of Munich Germany
In this paper, we address the problem of behavior-based cooperative navigation of mobile robots using safe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
LiLMaps: Learnable Implicit Language Maps
arXiv
收藏 引用
arXiv 2025年
作者: Kruzhkov, Evgenii Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI University of Bonn Germany Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics and The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
One of the current trends in robotics is to employ large language models (LLMs) to provide non-predefined command execution and natural human-robot interaction. It is useful to have an environment map together with it... 详细信息
来源: 评论
PID-Inspired Inductive Biases for Deep Reinforcement learning in Partially Observable Control Tasks
arXiv
收藏 引用
arXiv 2023年
作者: Char, Ian Schneider, Jeff Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Robotics Institute Carnegie Mellon University PittsburghPA15213 United States
Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When ... 详细信息
来源: 评论
Predicting against the Flow: Boosting Source Localization by Means of Field Belief Modeling using Upstream Source Proximity
Predicting against the Flow: Boosting Source Localization by...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Finn L Busch Nathalie Bauschmann Sami Haddadin Robert Seifried Daniel A Duecker Institute of Mechanics and Ocean Engineering Hamburg University of Technology Germany Division of Robotics Perception and Learning (RPL) KTH Royal Institute of Technology Sweden Munich Institute of Robotics and Machine Intelligence (MIRMI) Technical University of Munich (TUM) Germany
Time-effective and accurate source localization with mobile robots is crucial in safety-critical scenarios, e.g. leakage detection. This becomes particular challenging in realistic cluttered scenarios, i.e. in the pre... 详细信息
来源: 评论