咨询与建议

限定检索结果

文献类型

  • 164 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 325 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 151 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 88 篇 控制科学与工程
    • 32 篇 生物工程
    • 30 篇 信息与通信工程
    • 28 篇 生物医学工程(可授...
    • 27 篇 光学工程
    • 16 篇 电气工程
    • 15 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 9 篇 交通运输工程
    • 7 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
  • 119 篇 理学
    • 60 篇 数学
    • 42 篇 生物学
    • 28 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 15 篇 系统科学
    • 8 篇 化学
  • 42 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 7 篇 农学
    • 7 篇 作物学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 15 篇 reinforcement le...
  • 15 篇 three-dimensiona...
  • 12 篇 semantics
  • 11 篇 semantic segment...
  • 11 篇 planning
  • 11 篇 robot sensing sy...
  • 10 篇 object detection
  • 10 篇 accuracy
  • 9 篇 laser radar
  • 8 篇 robots
  • 8 篇 point cloud comp...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 shape
  • 6 篇 hidden markov mo...
  • 6 篇 image segmentati...
  • 6 篇 location awarene...
  • 6 篇 navigation
  • 6 篇 measurement
  • 6 篇 geometry

机构

  • 39 篇 lamarr institute...
  • 29 篇 center for robot...
  • 25 篇 robotics institu...
  • 24 篇 machine learning...
  • 23 篇 machine learning...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 center for neuro...
  • 6 篇 machine learning...
  • 6 篇 humanoid robots ...
  • 6 篇 learning and int...
  • 6 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 5 篇 the lamarr insti...
  • 5 篇 neuroscience and...
  • 5 篇 fraunhofer iais

作者

  • 25 篇 schneider jeff
  • 25 篇 behnke sven
  • 24 篇 stachniss cyrill
  • 24 篇 toussaint marc
  • 16 篇 cyrill stachniss
  • 15 篇 behley jens
  • 14 篇 marc toussaint
  • 11 篇 jeff schneider
  • 10 篇 jens behley
  • 10 篇 carneiro gustavo
  • 10 篇 bennewitz maren
  • 9 篇 maicas gabriel
  • 9 篇 mainprice jim
  • 7 篇 char ian
  • 7 篇 sven behnke
  • 7 篇 nascimento jacin...
  • 6 篇 neiswanger willi...
  • 6 篇 memmesheimer rap...
  • 6 篇 sami haddadin
  • 6 篇 mehta viraj

语言

  • 232 篇 英文
  • 93 篇 其他
检索条件"机构=Institute of Machine Learning and Robotics"
325 条 记 录,以下是81-90 订阅
排序:
TReR: A Lightweight Transformer Re-Ranking Approach for 3D LiDAR Place Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Barros, Tiago Garrote, Luís Aleksandrov, Martin Premebida, Cristiano Nunes, Urbano J. The University of Coimbra Institute of Systems and Robotics Department of Electrical and Computer Engineering Portugal Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin Germany
Autonomous driving systems often require reliable loop closure detection to guarantee reduced localization drift. Recently, 3D LiDAR-based localization methods have used retrieval-based place recognition to find revis... 详细信息
来源: 评论
Unifying Complementarity Constraints and Control Barrier Functions for Safe Whole-Body Robot Control
arXiv
收藏 引用
arXiv 2025年
作者: Muchacho, Rafael I Cabral Laha, Riddhiman Pokorny, Florian T. Figueredo, Luis F.C. Chakraborty, Nilanjan Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden Munich Institute of Robotics and Machine Intelligence TUM Germany School of Computer Science University of Nottingham United Kingdom Department of Mechanical Engineering Stony Brook University NY United States
Safety-critical whole-body robot control demands reactive methods that ensure collision avoidance in real-time. Complementarity constraints and control barrier functions (CBF) have emerged as core tools for ensuring s... 详细信息
来源: 评论
Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments
Control-Barrier-Aided Teleoperation with Visual-Inertial SLA...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Siqi Zhou Sotiris Papatheodorou Stefan Leutenegger Angela P. Schoellig Learning Systems and Robotics Lab School of Computation Information and Technology Technical University of Munich Munich Institute of Robotics and Machine Intelligence (MIRMI) Smart Robotics Lab School of Computation Information and Technology Technical University of Munich Department of Computing Smart Robotics Lab Imperial College London
In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial ... 详细信息
来源: 评论
Neural latent geometry search: product manifold inference via gromov-hausdorff-informed Bayesian optimization  23
Neural latent geometry search: product manifold inference vi...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Haitz Sáez de Ocáriz Borde Álvaro Arroyo Ismael Morales López Ingmar Posner Xiaowen Dong Oxford Robotics Institute University of Oxford Oxford-Man Institute University of Oxford Mathematical Institute University of Oxford Machine Learning Research Group University of Oxford
Recent research indicates that the performance of machine learning models can be improved by aligning the geometry of the latent space with the underlying data structure. Rather than relying solely on Euclidean space,...
来源: 评论
learning Embeddings with Centroid Triplet Loss for Object Identification in Robotic Grasping
Learning Embeddings with Centroid Triplet Loss for Object Id...
收藏 引用
IEEE International Conference on Automation Science and Engineering (CASE)
作者: Anas Gouda Max Schwarz Christopher Reining Sven Behnke Alice Kirchheim TU Dortmund Lamarr Institute for Machine Learning and Artificial Intelligence Autonomous Intelligent Systems - Computer Science VI & Center for Robotics University of Bonn Germany Fraunhofer IML
Foundation models are a strong trend in deep learning and computer vision. These models serve as a base for applications as they require minor or no further fine-tuning by developers to integrate into their applicatio... 详细信息
来源: 评论
Security Fence Inspection at Airports Using Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Friederich, Nils Specker, Andreas Beyerer, Jürgen Karlsruhe Institute of Technology Institute for Automation and Applied Informatics Germany Karlsruhe Institute of Technology Institute for Anthropomatics and Robotics Germany Fraunhofer IOSB Fraunhofer Center for Machine Learning
To ensure the security of airports, it is essential to protect the airside from unauthorized access. For this purpose, security fences are commonly used, but they require regular inspection to detect damages. However,... 详细信息
来源: 评论
Physically-Consistent Parameter Identification of Robots in Contact
arXiv
收藏 引用
arXiv 2024年
作者: Khorshidi, Shahram Dawood, Murad Nederkorn, Benno Bennewitz, Maren Khadiv, Majid Humanoid Robots Lab University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence the Center for Robotics Bonn Germany Roboverse Reply Munich Germany Germany
Accurate inertial parameter identification is crucial for the simulation and control of robots encountering intermittent contacts with the environment. Classically, robots’ inertial parameters are obtained from CAD m... 详细信息
来源: 评论
Hierarchical Pose Estimation and Mapping with Multi-scale Neural Feature Fields
arXiv
收藏 引用
arXiv 2024年
作者: Kruzhkov, Evgenii Savinykh, Alena Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI University of Bonn Bonn Germany Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Bonn Germany
Robotic applications require a comprehensive understanding of the scene. In recent years, neural fields-based approaches that parameterize the entire environment have become popular. These approaches are promising due... 详细信息
来源: 评论
Addressing Bias in Fine-Grained Classification Datasets: A Strategy for Reliable Evaluation
Addressing Bias in Fine-Grained Classification Datasets: A S...
收藏 引用
Pattern Recognition Systems (ICPRS), International Conference on
作者: Stefan Wolf Jannik Koch Lars Sommer Jürgen Beyerer Vision and Fusion Lab Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany Fraunhofer IOSB Karlsruhe Germany Fraunhofer Center for Machine Learning
The high specificity of classes in fine-grained clas-sification tasks leads to a small number of images per class in the common research datasets. Thus, the intra-class variance, such as differences in vehicle colors ...
来源: 评论
HeLiMOS: A Dataset for Moving Object Segmentation in 3D Point Clouds From Heterogeneous LiDAR Sensors
arXiv
收藏 引用
arXiv 2024年
作者: Lim, Hyungtae Jang, Seoyeon Mersch, Benedikt Behley, Jens Myung, Hyun Stachniss, Cyrill The School of Electrical Engineering KAIST [Korea Advanced Institute of Science and Technology Daejeon Korea Republic of The Center for Robotics University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Moving object segmentation (MOS) using a 3D light detection and ranging (LiDAR) sensor is crucial for scene understanding and identification of moving objects. Despite the availability of various types of 3D LiDAR sen... 详细信息
来源: 评论