咨询与建议

限定检索结果

文献类型

  • 81 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 49 篇 光学工程
    • 49 篇 生物医学工程(可授...
    • 40 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 28 篇 生物工程
    • 21 篇 电气工程
    • 20 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 核科学与技术
    • 3 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 51 篇 理学
    • 31 篇 生物学
    • 26 篇 物理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
    • 1 篇 大气科学
  • 23 篇 医学
    • 22 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
    • 2 篇 医学技术(可授医学...
  • 12 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学

主题

  • 7 篇 magnetic resonan...
  • 6 篇 image segmentati...
  • 6 篇 medical imaging
  • 3 篇 cancer
  • 3 篇 deep learning
  • 3 篇 tumors
  • 2 篇 tissue
  • 2 篇 scalability
  • 2 篇 generative adver...
  • 2 篇 pediatrics
  • 2 篇 benchmarking
  • 2 篇 pipelines
  • 2 篇 diseases
  • 2 篇 radiotherapy
  • 2 篇 image reconstruc...
  • 2 篇 dynamic contrast...
  • 1 篇 alzheimer's dise...
  • 1 篇 image enhancemen...
  • 1 篇 prompt engineeri...
  • 1 篇 physical propert...

机构

  • 16 篇 institute of mac...
  • 15 篇 school of comput...
  • 14 篇 department of co...
  • 13 篇 school of biomed...
  • 10 篇 helmholtz ai hel...
  • 9 篇 school of biomed...
  • 8 篇 university of pe...
  • 7 篇 lab crestview ra...
  • 7 篇 center for machi...
  • 7 篇 department of ra...
  • 7 篇 national biomedi...
  • 7 篇 department of ne...
  • 7 篇 center for data ...
  • 6 篇 sage bionetworks...
  • 6 篇 department of qu...
  • 6 篇 mercy catholic m...
  • 6 篇 athinoula a mart...
  • 6 篇 department of ap...
  • 6 篇 precisionfda u.s...
  • 6 篇 translatum - cen...

作者

  • 28 篇 schnabel julia a...
  • 16 篇 rueckert daniel
  • 15 篇 kaissis georgios
  • 9 篇 kofler florian
  • 8 篇 bakas spyridon
  • 8 篇 ezhov ivan
  • 8 篇 linguraru marius...
  • 8 篇 bercea cosmin i.
  • 8 篇 eichhorn hannah
  • 7 篇 li hongwei bran
  • 7 篇 wang chunhao
  • 7 篇 kazerooni anahit...
  • 7 篇 chung verena
  • 7 篇 moawad ahmed w.
  • 7 篇 calabrese evan
  • 7 篇 anazodo udunna
  • 7 篇 piraud marie
  • 7 篇 hammernik kersti...
  • 6 篇 meier zeke
  • 6 篇 eddy james

语言

  • 83 篇 英文
  • 13 篇 其他
  • 2 篇 中文
检索条件"机构=Institute of Machine Learning in Biomedical Imaging"
98 条 记 录,以下是1-10 订阅
排序:
Semantic Alignment of Unimodal Medical Text and Vision Representations
arXiv
收藏 引用
arXiv 2025年
作者: Di Folco, Maxime Chan, Emily Hasny, Marta Bercea, Cosmin I. Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
General-purpose AI models, particularly those designed for text and vision, demonstrate impressive versatility across a wide range of deep-learning tasks. However, they often underperform in specialised domains like m... 详细信息
来源: 评论
DEALing with Image Reconstruction: Deep Attentive Least Squares
arXiv
收藏 引用
arXiv 2025年
作者: Pourya, Mehrsa Kobler, Erich Unser, Michael Neumayer, Sebastian Biomedical Imaging Group EPFL Lausanne Switzerland Institute for Machine Learning LIT AI lab Institute for Virtual Morphology Johannes Kepler University Linz Austria Faculty of Mathematics TU Chemnitz Germany
State-of-the-art image reconstruction often relies on complex, highly parameterized deep architectures. We propose an alternative: a data-driven reconstruction method inspired by the classic Tikhonov regularization. O... 详细信息
来源: 评论
Fair and Private CT Contrast Agent Detection  2nd
Fair and Private CT Contrast Agent Detection
收藏 引用
2nd International Workshop on Fairness of AI in Medical imaging, FAIMI 2024, and 3rd International Workshop on Ethical and Philosophical Issues in Medical imaging, EPIMI 2024, Held in Conjunction with the International Conference on Medical Image Computing and Computer Assisted Interventions, MICCAI 2024
作者: Kaess, Philipp Ziller, Alexander Mantz, Lea Rueckert, Daniel Fintelmann, Florian J. Kaissis, Georgios AI in Healthcare and Medicine Technical University of Munich Munich Germany Department of Radiology Massachusetts General Hospital Boston United States Department of Diagnostic and Interventional Radiology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany Department of Computing Imperial College London London United Kingdom Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany
Intravenous (IV) contrast agents are an established medical tool to enhance the visibility of certain structures. However, their application substantially changes the appearance of Computed Tomography (CT) images, whi... 详细信息
来源: 评论
Cross-Domain and Cross-Dimension learning for Image-to-Graph Transformers
Cross-Domain and Cross-Dimension Learning for Image-to-Graph...
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
作者: Berger, Alexander H. Lux, Laurin Shit, Suprosanna Ezhov, Ivan Kaissis, Georgios Menten, Martin J. Rueckert, Daniel Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Germany Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Germany Department of Quantitative Biomedicine University of Zurich Switzerland Weill Cornell Medicine Cornell University New York City United States
Direct image-to-graph transformation is a challenging task that involves solving object detection and relationship prediction in a single model. Due to this task's complexity, large training datasets are rare in m... 详细信息
来源: 评论
TGV: Tabular Data-Guided learning of Visual Cardiac Representations
arXiv
收藏 引用
arXiv 2025年
作者: Hasny, Marta Folco, Maxime Di Bressem, Keno Schnabel, Julia School of Computation Information and Technology Technical University of Munich Germany Institute of Machine Learning for Biomedical Imaging Helmholtz Munich Germany German Heart Center Munich Technical University of Munich Germany Klinikum rechts der Isar Technical University of Munich Germany School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
Contrastive learning methods in computer vision typically rely on different views of the same image to form pairs. However, in medical imaging, we often seek to compare entire patients with different phenotypes rather... 详细信息
来源: 评论
Cross-Domain and Cross-Dimension learning for Image-to-Graph Transformers
Cross-Domain and Cross-Dimension Learning for Image-to-Graph...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Alexander H. Berger Laurin Lux Suprosanna Shit Ivan Ezhov Georgios Kaissis Martin J. Menten Daniel Rueckert Johannes C. Paetzold School of Computation Information and Technology Technical University of Munich Germany Munich Center for Machine Learning (MCML) Munich Germany Department of Quantitative Biomedicine University of Zurich Switzerland Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Germany Department of Computing Imperial College London UK Weill Cornell Medicine Cornell University New York City USA
Direct image-to-graph transformation is a challenging task that involves solving object detection and relationship prediction in a single model. Due to this task's complexity, large training datasets are rare in m... 详细信息
来源: 评论
High-dimensional multimodal uncertainty estimation by manifold alignment: Application to 3D right ventricular strain computations
arXiv
收藏 引用
arXiv 2025年
作者: Folco, Maxime Di Bernardino, Gabriel Clarysse, Patrick Duchateau, Nicolas Univ Lyon Université Claude Bernard Lyon 1 INSA-Lyon CNRS Inserm CREATIS UMR 5220 U1294 LyonF-69621 France Institute of Machine Learning in Biomedical Imaging Helmholtz Center Munich Germany DTIC Universitat Pompeu Fabra Barcelona Spain France
Confidence in the results is a key ingredient to improve the adoption of machine learning methods by clinicians. Uncertainties on the results have been considered in the literature, but mostly those originating from t... 详细信息
来源: 评论
PISCO: Self-Supervised k-Space Regularization for Improved Neural Implicit k-Space Representations of Dynamic MRI
arXiv
收藏 引用
arXiv 2025年
作者: Spieker, Veronika Eichhorn, Hannah Huang, Wenqi Stelter, Jonathan K. Catalan, Tabita Braren, Rickmer F. Rueckert, Daniel Costabal, Francisco Sahli Hammernik, Kerstin Karampinos, Dimitrios C. Prieto, Claudia Schnabel, Julia A. Institute of Machine Learning for Biomedical Imaging Helmholtz Munich Neuherberg Germany School of Computation Information and Technology Technical University of Munich Germany Millenium Institute for Intelligent Healthcare Engineering Santiago Chile School of Medicine and Health Klinikum rechts der Isar Technical University of Munich Munich Germany Department of Computing Imperial College London London United Kingdom School of Engineering Pontificia Universidad Católica de Chile Santiago Chile School of Biomedical Imaging and Imaging Sciences King’s College London London United Kingdom
Neural implicit k-space representations (NIK) have shown promising results for dynamic magnetic resonance imaging (MRI) at high temporal resolutions. Yet, reducing acquisition time, and thereby available training data... 详细信息
来源: 评论
Motion-Robust T∗2 Quantification from Gradient Echo MRI with Physics-Informed Deep learning
arXiv
收藏 引用
arXiv 2025年
作者: Eichhorn, Hannah Spieker, Veronika Hammernik, Kerstin Saks, Elisa Felsner, Lina Weiss, Kilian Preibisch, Christine Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Computation Information & Technology Technical University of Munich Germany School of Medicine & Health Institute for Diagnostic and Interventional Neuroradiology Technical University of Munich Germany School of Medicine & Health TUM-Neuroimaging Center Technical University of Munich Germany Philips GmbH Market DACH Germany School of Medicine & Health Clinic of Neurology Technical University of Munich Germany School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
Purpose: T∗2 quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to the high sensitivity to magnetic field inhomogeneities, which are influenced by motion and mi... 详细信息
来源: 评论
AI-DRIVEN AUTOMATED TOOL FOR ABDOMINAL CT BODY COMPOSITION ANALYSIS IN GASTROINTESTINAL CANCER MANAGEMENT
arXiv
收藏 引用
arXiv 2025年
作者: Nan, Xinyu He, Meng Chen, Zifan Dong, Bin Tang, Lei Zhang, Li Center for Data Science Peking University China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong co... 详细信息
来源: 评论