咨询与建议

限定检索结果

文献类型

  • 81 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 49 篇 光学工程
    • 49 篇 生物医学工程(可授...
    • 40 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 28 篇 生物工程
    • 21 篇 电气工程
    • 20 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 核科学与技术
    • 3 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 51 篇 理学
    • 31 篇 生物学
    • 26 篇 物理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
    • 1 篇 大气科学
  • 23 篇 医学
    • 22 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
    • 2 篇 医学技术(可授医学...
  • 12 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学

主题

  • 7 篇 magnetic resonan...
  • 6 篇 image segmentati...
  • 6 篇 medical imaging
  • 3 篇 cancer
  • 3 篇 deep learning
  • 3 篇 tumors
  • 2 篇 tissue
  • 2 篇 scalability
  • 2 篇 generative adver...
  • 2 篇 pediatrics
  • 2 篇 benchmarking
  • 2 篇 pipelines
  • 2 篇 diseases
  • 2 篇 radiotherapy
  • 2 篇 image reconstruc...
  • 2 篇 dynamic contrast...
  • 1 篇 alzheimer's dise...
  • 1 篇 image enhancemen...
  • 1 篇 prompt engineeri...
  • 1 篇 physical propert...

机构

  • 16 篇 institute of mac...
  • 15 篇 school of comput...
  • 14 篇 department of co...
  • 13 篇 school of biomed...
  • 10 篇 helmholtz ai hel...
  • 9 篇 school of biomed...
  • 8 篇 university of pe...
  • 7 篇 lab crestview ra...
  • 7 篇 center for machi...
  • 7 篇 department of ra...
  • 7 篇 national biomedi...
  • 7 篇 department of ne...
  • 7 篇 center for data ...
  • 6 篇 sage bionetworks...
  • 6 篇 department of qu...
  • 6 篇 mercy catholic m...
  • 6 篇 athinoula a mart...
  • 6 篇 department of ap...
  • 6 篇 precisionfda u.s...
  • 6 篇 translatum - cen...

作者

  • 28 篇 schnabel julia a...
  • 16 篇 rueckert daniel
  • 15 篇 kaissis georgios
  • 9 篇 kofler florian
  • 8 篇 bakas spyridon
  • 8 篇 ezhov ivan
  • 8 篇 linguraru marius...
  • 8 篇 bercea cosmin i.
  • 8 篇 eichhorn hannah
  • 7 篇 li hongwei bran
  • 7 篇 wang chunhao
  • 7 篇 kazerooni anahit...
  • 7 篇 chung verena
  • 7 篇 moawad ahmed w.
  • 7 篇 calabrese evan
  • 7 篇 anazodo udunna
  • 7 篇 piraud marie
  • 7 篇 hammernik kersti...
  • 6 篇 meier zeke
  • 6 篇 eddy james

语言

  • 83 篇 英文
  • 13 篇 其他
  • 2 篇 中文
检索条件"机构=Institute of Machine Learning in Biomedical Imaging"
98 条 记 录,以下是31-40 订阅
排序:
Which Anatomical Directions to Quantify Local Right Ventricular Strain in 3D Echocardiography?  12th
Which Anatomical Directions to Quantify Local Right Ventric...
收藏 引用
Functional imaging and Modeling of the Heart - 12th International Conference, FIMH 2023, Proceedings
作者: Di Folco, Maxime Dargent, Thomas Bernardino, Gabriel Clarysse, Patrick Duchateau, Nicolas Univ Lyon Université Claude Bernard Lyon 1 INSA-Lyon CNRS Inserm CREATIS UMR 5220 U1294 Villeurbanne69621 France Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Munich Germany École Polytechnique IPSL CNRS Palaiseau France BCNmedtech DTIC Universitat Pompeu Fabra Barcelona Spain Paris France
Technological advances in image quality and post-processing have led to the better clinical adoption of 3D echocardiography to quantify cardiac function. However, the right ventricle (RV) raises specific challenges du... 详细信息
来源: 评论
Advancing Neonatal Care: A Deep learning Approach for Non-Contact Heart Rate Monitoring
Advancing Neonatal Care: A Deep Learning Approach for Non-Co...
收藏 引用
2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024
作者: Grafton, Alex Castelblanco, Alejandra Warnecke, Joana M. Thomson, Lynn Schubert, Benjamin Hilgendorff, Anne Schnabel, Julia A. Lasenby, Joan Beardsall, Kathryn Signal Processing and Communications Laboratory Engineering Department Cambridge University United Kingdom Computational Health Center Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany University of Cambridge Department of Paediatrics United Kingdom Munich Germany Dr. von Hauner Children’s Hospital Hospital of the Ludwig Maximilian Universität München Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany
Heart rate is an important indicator of newborn health status. Conventional wired heart rate monitoring is affected by motion, can limit parental bonding and is prone to damage the fragile newborn skin. Video-based he... 详细信息
来源: 评论
Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders
arXiv
收藏 引用
arXiv 2024年
作者: Avci, Mehmet Yigit Chan, Emily Zimmer, Veronika Rueckert, Daniel Wiestler, Benedikt Schnabel, Julia A. Bercea, Cosmin I. Technical University of Munich Germany Helmholtz AI Institute of Machine Learning in Biomedical Imaging Munich Germany Klinikum Rechts der Isar Munich Germany Imperial College London United Kingdom School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom
With the increasing incidence of neurodegenerative diseases such as Alzheimer’s Disease (AD), there is a need for further research that enhances detection and monitoring of the diseases. We present MORPHADE (Morpholo... 详细信息
来源: 评论
Physics-Informed Deep learning for Motion-Corrected Reconstruction of Quantitative Brain MRI
arXiv
收藏 引用
arXiv 2024年
作者: Eichhorn, Hannah Spieker, Veronika Hammernik, Kerstin Saks, Elisa Weiss, Kilian Preibisch, Christine Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Computation Information & Technology TUM Germany School of Medicine & Health TUM Germany Philips GmbH Market DACH Germany School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
We propose PHIMO, a physics-informed learning-based motion correction method tailored to quantitative MRI. PHIMO leverages information from the signal evolution to exclude motion-corrupted k-space lines from a data-co... 详细信息
来源: 评论
Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Fischer, Stefan M. Kiechle, Johannes Lang, Daniel M. Peeken, Jan C. Schnabel, Julia A. School of Computation Information and Technology Technical University Munich Germany Department of RadioOncology Klinikum rechts der Isar Technical University Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom
Pathological lymph node delineation is crucial in cancer diagnosis, progression assessment, and treatment planning. The MICCAI 2023 Lymph Node Quantification Challenge published the first public dataset for pathologic... 详细信息
来源: 评论
Differentially Private Active learning: Balancing Effective Data Selection and Privacy
arXiv
收藏 引用
arXiv 2024年
作者: Schwethelm, Kristian Kaiser, Johannes Kuntzer, Jonas Yiǧitsoy, Mehmet Ruckert, Daniel Kaissis, Georgios Chair for Artificial Intelligence in Medicine Technical University of Munich Germany Deepc GmbH Munich Germany Department of Computing Imperial College London United Kingdom Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Germany
Active learning (AL) is a widely used technique for optimizing data labeling in machine learning by iteratively selecting, labeling, and training on the most informative data. However, its integration with formal priv... 详细信息
来源: 评论
Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging  21
Efficient hierarchical Bayesian inference for spatio-tempora...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Ali Hashemi Yijing Gao Chang Cai Sanjay Ghosh Klaus-Robert Müller Srikantan S. Nagarajan Stefan Haufe Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany and Machine Learning Group Technische Universität Berlin Germany Department of Radiology and Biomedical Imaging University of California San Francisco Department of Radiology and Biomedical Imaging University of California San Francisco and National Engineering Research Center for E-Learning Central China Normal University China Machine Learning Group Technische Universität Berlin Germany and BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany and Department of Artificial Intelligence Korea University South Korea and Max Planck Institute for Informatics Saarbrücken Germany Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany and Physikalisch-Technische Bundesanstalt Berlin Germany and Charité – Universitätsmedizin Berlin Germany and Bernstein Center for Computational Neuroscience Berlin Germany
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI ...
来源: 评论
ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space
arXiv
收藏 引用
arXiv 2023年
作者: Spieker, Veronika Huang, Wenqi Eichhorn, Hannah Stelter, Jonathan Weiss, Kilian Zimmer, Veronika A. Braren, Rickmer F. Karampinos, Dimitrios C. Hammernik, Kerstin Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany School of Medicine Technical University of Munich Germany Philips GmbH Germany Partner Site Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom
Motion-resolved reconstruction for abdominal magnetic resonance imaging (MRI) remains a challenge due to the trade-off between residual motion blurring caused by discretized motion states and undersampling artefacts. ... 详细信息
来源: 评论
Weakly Supervised Object Detection in Chest X-Rays with Differentiable ROI Proposal Networks and Soft ROI Pooling
arXiv
收藏 引用
arXiv 2024年
作者: Müller, Philip Meissen, Felix Kaissis, Georgios Rueckert, Daniel School of Computation Information and Technology TU Munich Garching85748 Germany The group for Reliable AI Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Germany The Biomedical Image Analysis Group Imperial College London LondonSW7 2AZ United Kingdom
Weakly supervised object detection (WSup-OD) increases the usefulness and interpretability of image classification algorithms without requiring additional supervision. The successes of multiple instance learning in th... 详细信息
来源: 评论
From Model Based to Learned Regularization in Medical Image Registration: A Comprehensive Review
arXiv
收藏 引用
arXiv 2024年
作者: Reithmeir, Anna Spieker, Veronika Sideri-Lampretsa, Vasiliki Rueckert, Daniel Schnabel, Julia A. Zimmer, Veronika A. Munich Germany Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Munich Germany Department of Computing Imperial College London London United Kingdom School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
Image registration is fundamental in medical imaging applications, such as disease progression analysis or radiation therapy planning. The primary objective of image registration is to precisely capture the deformatio...
来源: 评论