咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 46 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 22 篇 生物工程
    • 16 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 8 篇 信息与通信工程
    • 2 篇 核科学与技术
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 安全科学与工程
  • 40 篇 理学
    • 25 篇 生物学
    • 20 篇 物理学
    • 11 篇 数学
    • 7 篇 统计学(可授理学、...
    • 1 篇 化学
  • 21 篇 医学
    • 18 篇 基础医学(可授医学...
    • 18 篇 临床医学
    • 12 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 11 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 3 篇 公共管理
    • 3 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学

主题

  • 6 篇 magnetic resonan...
  • 5 篇 medical imaging
  • 4 篇 deep learning
  • 4 篇 image segmentati...
  • 3 篇 tumors
  • 2 篇 generative adver...
  • 2 篇 pediatrics
  • 2 篇 predictive model...
  • 2 篇 differential pri...
  • 2 篇 pipelines
  • 2 篇 computer vision
  • 2 篇 image reconstruc...
  • 2 篇 standards
  • 2 篇 active learning
  • 2 篇 dynamic contrast...
  • 2 篇 training
  • 1 篇 alzheimer's dise...
  • 1 篇 dtx
  • 1 篇 cognitive reappr...
  • 1 篇 physical propert...

机构

  • 17 篇 department of co...
  • 16 篇 institute of mac...
  • 15 篇 school of comput...
  • 12 篇 school of biomed...
  • 10 篇 helmholtz ai hel...
  • 7 篇 school of biomed...
  • 7 篇 lab crestview ra...
  • 7 篇 department of qu...
  • 7 篇 university of pe...
  • 7 篇 translatum - cen...
  • 7 篇 institute of mac...
  • 7 篇 department of ne...
  • 6 篇 sage bionetworks...
  • 6 篇 mercy catholic m...
  • 6 篇 department of ra...
  • 6 篇 athinoula a mart...
  • 6 篇 department of ap...
  • 6 篇 precisionfda u.s...
  • 6 篇 mcgill universit...
  • 6 篇 heidelberg

作者

  • 29 篇 schnabel julia a...
  • 17 篇 rueckert daniel
  • 16 篇 kaissis georgios
  • 12 篇 kofler florian
  • 10 篇 bakas spyridon
  • 10 篇 ezhov ivan
  • 9 篇 li hongwei bran
  • 9 篇 menze bjoern
  • 8 篇 linguraru marius...
  • 8 篇 bercea cosmin i.
  • 8 篇 eichhorn hannah
  • 8 篇 piraud marie
  • 7 篇 wang chunhao
  • 7 篇 kazerooni anahit...
  • 7 篇 chung verena
  • 7 篇 moawad ahmed w.
  • 7 篇 calabrese evan
  • 7 篇 anazodo udunna
  • 7 篇 hammernik kersti...
  • 6 篇 meier zeke

语言

  • 67 篇 英文
  • 12 篇 其他
检索条件"机构=Institute of Machine Learning in Biomedical Imaging and Helmholtz AI"
79 条 记 录,以下是51-60 订阅
排序:
Deep learning for Retrospective Motion Correction in MRI: A Comprehensive Review
arXiv
收藏 引用
arXiv 2023年
作者: Spieker, Veronika Eichhorn, Hannah Hammernik, Kerstin Rueckert, Daniel Preibisch, Christine Karampinos, Dimitrios C. Schnabel, Julia A. The Institute of Machine Learning for Biomedical Imaging Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany The Department of Computing Imperial College London United Kingdom Artificial Intelligence in Healthcare and Medicine Klinikum rechts der Isar Technical University of Munich Germany School of Biomedical Imaging and Imaging Sciences King’s College London United Kingdom The Department of Neuroradiology Klinikum rechts der Isar Technical University of Munich Germany The Department of Diagnostic and In-terventional Radiology Klinikum rechts der Isar Technical University of Munich Germany
Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed im... 详细信息
来源: 评论
A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer
arXiv
收藏 引用
arXiv 2024年
作者: Machado, Inês P. Reithmeir, Anna Kogl, Fryderyk Rundo, Leonardo Funingana, Gabriel Reinius, Marika Mungmeeprued, Gift Gao, Zeyu McCague, Cathal Kerfoot, Eric Woitek, Ramona Sala, Evis Ou, Yangming Brenton, James Schnabel, Julia Crispin, Mireia Department of Oncology University of Cambridge United Kingdom Cancer Research UK Cambridge Institute University of Cambridge United Kingdom Early Cancer Institute University of Cambridge United Kingdom School of Computation Information & Technology Technical University of Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany Department of Information and Electrical Engineering University of Salerno Italy School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom Research Center for Medical Image Analysis and AI Danube University Austria Department of Radiologic Sciences Università Cattolica del Sacro Cuore Italy Department of Radiology Boston Children’s Hospital Harvard Medical School United States
High-grade serous ovarian carcinoma (HGSOC) is characterised by significant spatial and temporal heterogeneity, typically manifesting at an advanced metastatic stage. A major challenge in treating advanced HGSOC is ef... 详细信息
来源: 评论
Agreement of Image Quality Metrics with Radiological Evaluation in the Presence of Motion Artifacts
arXiv
收藏 引用
arXiv 2024年
作者: Marchetto, Elisa Eichhorn, Hannah Gallichan, Daniel Schnabel, Julia A. Ganz, Melanie Bernard and Irene Schwartz Center for Biomedical Imaging Dept. of Radiology NYU School of Medicine NY United States Dept. of Radiology NYU School of Medicine NY United States CUBRIC School of Engineering Cardiff University Cardiff United Kingdom Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Neuherberg Germany School of Computation Information and Technology Technical University of Munich Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Department of Computer Science University of Copenhagen Copenhagen Denmark Neurobiology Research Unit Copenhagen University Hospital Copenhagen Denmark
Purpose: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. In this work, we compare the performance of commonly used reference-based and referenc... 详细信息
来源: 评论
Causal machine learning for predicting treatment outcomes
arXiv
收藏 引用
arXiv 2024年
作者: Feuerriegel, Stefan Frauen, Dennis Melnychuk, Valentyn Schweisthal, Jonas Hess, Konstantin Curth, Alicia Bauer, Stefan Kilbertus, Niki Kohane, Isaac S. van der Schaar, Mihaela LMU Munich Munich Germany Munich Center for Machine Learning Munich Germany Department of Applied Mathematics & Theoretical Physics University of Cambridge Cambridge United Kingdom School of Computation Information and Technology TU Munich Munich Germany Helmholtz Munich Munich Germany Department of Biomedical Informatics Harvard Medical School Boston United States Cambridge Centre for AI in Medicine University of Cambridge Cambridge United Kingdom The Alan Turing Institute London United Kingdom
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes. Here, we present how methods from causal ML can be used to understand the effectiveness of treatments, thereby suppo... 详细信息
来源: 评论
Advancing Neonatal Care: A Deep learning Approach for Non-Contact Heart Rate Monitoring
Advancing Neonatal Care: A Deep Learning Approach for Non-Co...
收藏 引用
International Conference on e-health Networking, Applications and Services (HealthCom)
作者: Alex Grafton Alejandra Castelblanco Joana M. Warnecke Lynn Thomson Benjamin Schubert Anne Hilgendorff Julia A. Schnabel Joan Lasenby Kathryn Beardsall Engineering Department Signal Processing and Communications Laboratory Cambridge University UK Computational Health Center Munich Germany School of Computation Information and Technology Technical University of Munich Germany Department of Paediatrics University of Cambridge UK Institute of Lung Health and Immunity Helmholtz Center Munich. Comprehensive Pneumology Center Munich Member of the German Center of Lung Research (DZL) Munich Germany Dr. von Hauner Children's Hospital Hospital of the Ludwig Maximilian Universität München Munich Germany School of Biomedical Engineering and Imaging Sciences King's College London UK Institute of Machine Learning in Biomedical Imaging Munich Germany
Heart rate is an important indicator of newborn health status. Conventional wired heart rate monitoring is affected by motion, can limit parental bonding and is prone to damage the fragile newborn skin. Video-based he... 详细信息
来源: 评论
Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks
arXiv
收藏 引用
arXiv 2024年
作者: Osuala, Richard Joshi, Smriti Tsirikoglou, Apostolia Garrucho, Lidia Pinaya, Walter H.L. Lang, Daniel M. Schnabel, Julia A. Diaz, Oliver Lekadir, Karim Departament de Matemàtiques i Informàtica Universitat de Barcelona Spain Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Munich Germany School of Computation Information and Technology Technical University of Munich Munich Germany Department of Oncology-Pathology Karolinska Institutet Stockholm Sweden King’s College London London United Kingdom Computer Vision Center Universitat Autònoma de Barcelona Bellaterra Spain Passeig Lluís Companys 23 Barcelona Spain
Purpose: Deep generative models and synthetic data generation have become essential for advancing computer-assisted diagnosis and treatment. We explore one such emerging and particularly promising application of deep ... 详细信息
来源: 评论
LNQ 2023 challenge: Benchmark of weakly-supervised techniques for mediastinal lymph node quantification
arXiv
收藏 引用
arXiv 2024年
作者: Dorent, Reuben Khajavi, Roya Idris, Tagwa Ziegler, Erik Somarouthu, Bhanusupriya Jacene, Heather LaCasce, Ann Deissler, Jonathan Ehrhardt, Jan Engelson, Sofija Fischer, Stefan M. Gu, Yun Handels, Heinz Kasai, Satoshi Kondo, Satoshi Maier-Hein, Klaus Schnabel, Julia A. Wang, Guotai Wang, Litingyu Wald, Tassilo Yang, Guang-Zhong Zhang, Hanxiao Zhang, Minghui Pieper, Steve Harris, Gordon Kikinis, Ron Kapur, Tina Brigham and Women’s Hospital Harvard Medical School BostonMA United States Massachusetts General Hospital Harvard Medical School BostonMA United States Yunu Inc. CaryNC United States Isomics Inc CambridgeMA United States Dana-Farber Cancer Institute BostonMA United States Technical University Munich Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Munich Germany Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Institute of Medical Informatics University of Lübeck Lübeck Germany German Research Center for Artificial Intelligence Lübeck Germany Niigata University of Health and Welfare Niigata Japan Muroran Institute of Technology Hokkaido Japan Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China University of Electronic Science and Technology of China Chengdu China Heidelberg Germany University of Heidelberg Heidelberg Germany Shanghai AI laboratory Shanghai China
Accurate assessment of lymph node size in 3D CT scans is crucial for cancer staging, therapeutic management, and monitoring treatment response. Existing state-of-the-art segmentation frameworks in medical imaging ofte... 详细信息
来源: 评论
Confidence intervals uncovered: Are we ready for real-world medical imaging ai?
arXiv
收藏 引用
arXiv 2024年
作者: Christodoulou, Evangelia Reinke, Annika Houhou, Rola Kalinowski, Piotr Erkan, Selen Sudre, Carole H. Burgos, Ninon Boutaj, Sofiène Loizillon, Sophie Solal, Maëlys Rieke, Nicola Cheplygina, Veronika Antonelli, Michela Mayer, Leon D. Tizabi, Minu D. Jorge Cardoso, M. Simpson, Amber Jäger, Paul F. Kopp-Schneider, Annette Varoquaux, Gaël Colliot, Olivier Maier-Hein, Lena Heidelberg Div. Intelligent Medical Systems Germany AI Health Innovation Cluster Germany NCT Heidelberg a partnership between DKFZ Heidelberg University Hospital Germany DKFZ Heidelberg Helmholtz Imaging Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany DKFZ Heidelberg Interactive Machine Learning Group Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London United Kingdom Sorbonne Université Institut du Cerveau - Paris Brain Institute - ICM CNRS Inria Inserm AP-HP Hôpital de la Pitié-Salpêtrière France NVIDIA Germany Department of Computer Science IT University of Copenhagen Denmark Centre for Medical Image Computing University College London United Kingdom School of Computing Queen’s University Canada Department of Biomedical and Molecular Sciences Queen’s University Canada Division of Biostatistics DKFZ Germany Parietal project team INRIA Saclay-Île de France France Faculty of Mathematics and Computer Science Heidelberg University Germany Medical Faculty Heidelberg University Germany
Medical imaging is spearheading the ai transformation of healthcare. Performance reporting is key to determine which methods should be translated into clinical practice. Frequently, broad conclusions are simply derive... 详细信息
来源: 评论
ReXamine-Global: A Framework for Uncovering Inconsistencies in Radiology Report Generation Metrics
arXiv
收藏 引用
arXiv 2024年
作者: Banerjee, Oishi Saenz, Agustina Wu, Kay Clements, Warren Zia, Adil Buensalido, Dominic Kavnoudias, Helen Abi-Ghanem, Alain S. El Ghawi, Nour Luna, Cibele Castillo, Patricia Al-Surimi, Khaled Daghistani, Rayyan A. Chen, Yuh-Min Chao, Heng-Sheng Heiliger, Lars Kim, Moon Haubold, Johannes Jonske, Frederic Rajpurkar, Pranav Department of Biomedical Informatics Harvard Medical School BostonMA United States Department of Radiology Alfred Health MelbourneVIC Australia Department of Diagnostic Radiology American University of Beirut Beirut Lebanon Department of Radiology University of Miami Miller School of Medicine MiamiFL United States University of Miami Jackson Memorial Hospital MiamiFL United States Department of Healthcare Management University of Doha for Science and Technology Doha Qatar Department of Medical Imaging King Abdulaziz Medical City Riyadh Saudi Arabia Department of Chest Medicine Taipei Veterans General Hospital Taipei Taiwan Institute for AI in Medicine University Hospital Essen North Rhine-Westphalia Essen Germany Department of Diagnostic and Interventional Radiology and Neuroradiology University Hospital Essen North Rhine-Westphalia Essen Germany Department of Medical Machine Learning Institute of AI in Medicine University Medicine Essen North Rhine-Westphalia Essen Germany MAIDA Initiative Partners
Given the rapidly expanding capabilities of generative ai models for radiology, there is a need for robust metrics that can accurately measure the quality of ai-generated radiology reports across diverse hospitals. We... 详细信息
来源: 评论
(Predictable) Performance Bias in Unsupervised Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: Meissen, Felix Breuer, Svenja Knolle, Moritz Buyx, Alena Müller, Ruth Kaissis, Georgios Wiestler, Benedikt Rückert, Daniel Chair for AI in Healthcare and Medicine Klinikum rechts der Isar der Technischen Universität München Einsteinstr. 25 Munich81675 Germany Department of Science Technology and Society School of Social Sciences and Technology Technical University of Munich Arcisstr. 21 Munich80333 Germany Department of Economics and Policy School of Management Technical University of Munich Arcisstraße 21 Munich80333 Germany Walther-von-Dyck-Str. 10 Garching85748 Germany Institute for History and Ethics of Medicine School of Medicine Technical University of Munich Prinzregentenstraße 68 Munich81675 Germany Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Ingolstädter Landstraße 1 Neuherberg85764 Germany Department of Diagnostic and Interventional Neuroradiology Klinikum rechts der Isar Ismaninger Str. 22 Munich81675 Germany Department of Computing Imperial College London LondonSW7 2AZ United Kingdom TranslaTUM Center for Translational Cancer Research Technical University of Munich Ismaninger Str. 22 Munich81675 Germany
Background With the ever-increasing amount of medical imaging data, the demand for algorithms to assist clinicians has amplified. Unsupervised anomaly detection (UAD) models promise to aid in the crucial first step of... 详细信息
来源: 评论