Deep neural networks have played a vital role in developing automated methods for addressing medical image segmentation. However, their reliance on labeled data impedes the practicability. Semi-Supervised learning is ...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion cl...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion classification with biomedical data. Aim: One of the most current studies in the medical sector, gaming-based applications, education sector, and many other domains is EEG-based emotion identification. The existing research on emotion recognition was published using models like KNN, RF Ensemble, SVM, CNN, and LSTM on biomedical EEG data. In general, only a few works have been published on ensemble or concatenation models for emotion recognition on EEG data and achieved better results than individual ones or a few machine learning approaches. Various papers have observed that CNN works better than other approaches for extracting features from the dataset, and LSTM works better on the sequence data. Methods: Our research is based on emotion recognition using EEG data, a mixed-model deep learning methodology, and its comparison with a machine learning mixed-model methodology. In this study, we introduced a mixed model using CNN and LSTM that classifies emotions in valence and arousal on the DEAP dataset with 14 channels across 32 people. Result and Discussion: We then compared it to SVM, KNN, and RF Ensemble, and concatenated these models with it. First preprocessed the raw data, then checked emotion classification using SVM, KNN, RF Ensemble, CNN, and LSTM individually. After that with the mixed model of CNN-LSTM, and SVM-KNN-RF Ensemble results are compared. Proposed model results have better accuracy as 80.70% in valence than individual ones with CNN, LSTM, SVM, KNN, RF Ensemble and concatenated models of SVM, KNN and RF Ensemble. Conclusion: Overall, this paper concludes a powerful technique for processing a range of EEG data is the combination of CNNs and LSTMs. Ensemble approach results show better performance in the case of valence at 80.70% and 78.24
In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent C...
详细信息
In recent years, artificial intelligence has undergone robust development, leading to the emergence of numerous autonomous AI applications. However, a crucial challenge lies in optimizing computational efficiency and ...
详细信息
The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive b...
详细信息
Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images' integrity and authenticity is necessary to protect them against various attacks that manip...
详细信息
Artificial intelligence (AI) has emerged as a powerful tool in computational biology, where it is being used to analyze large datasets to detect difficult biological patterns. This has enabled the design of new drug m...
详细信息
Today cardiovascular diseases have been posing a serious threat to human lives all over the world. Various automated decision-making systems have been proposed by the researchers to help cardiologists to diagnose hear...
详细信息
Depending on large-scale devices, the Internet of Things (IoT) provides massive data support for resource sharing and intelligent decision, but privacy risks also increase. As a popular distributed learning framework,...
详细信息
Depending on large-scale devices, the Internet of Things (IoT) provides massive data support for resource sharing and intelligent decision, but privacy risks also increase. As a popular distributed learning framework, Federated Learning (FL) is widely used because it does not need to share raw data while only parameters to collaboratively train models. However, Federated Learning is not spared by some emerging attacks, e.g., membership inference attack. Therefore, for IoT devices with limited resources, it is challenging to design a defense scheme against the membership inference attack ensuring high model utility, strong membership privacy and acceptable time efficiency. In this paper, we propose MemDefense, a lightweight defense mechanism to prevent membership inference attack from local models and global models in IoT-based FL, while maintaining high model utility. MemDefense adds crafted pruning perturbations to local models at each round of FL by deploying two key components, i.e., parameter filter and noise generator. Specifically, the parameter filter selects the apposite model parameters which have little impact on the model test accuracy and contribute more to member inference attacks. Then, the noise generator is used to find the pruning noise that can reduce the attack accuracy while keeping high model accuracy, protecting each participant's membership privacy. We comprehensively evaluate MemDefense with different deep learning models and multiple benchmark datasets. The experimental results show that lowcost MemDefense drastically reduces the attack accuracy within limited drop of classification accuracy, meeting the requirements for model utility, membership privacy and time efficiency. IEEE
Data Privacy Preservation (DPP) is a control measures to protect users sensitive information from third party. The DPP guarantees that the information of the user’s data is not being misused. User authorization is hi...
详细信息
暂无评论