咨询与建议

限定检索结果

文献类型

  • 990 篇 会议
  • 445 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 1,444 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 953 篇 工学
    • 516 篇 计算机科学与技术...
    • 451 篇 软件工程
    • 194 篇 信息与通信工程
    • 150 篇 机械工程
    • 134 篇 控制科学与工程
    • 132 篇 光学工程
    • 125 篇 生物医学工程(可授...
    • 105 篇 生物工程
    • 91 篇 电子科学与技术(可...
    • 67 篇 电气工程
    • 64 篇 仪器科学与技术
    • 49 篇 化学工程与技术
    • 22 篇 交通运输工程
    • 18 篇 力学(可授工学、理...
    • 18 篇 材料科学与工程(可...
    • 17 篇 航空宇航科学与技...
    • 16 篇 土木工程
    • 15 篇 安全科学与工程
  • 503 篇 理学
    • 306 篇 数学
    • 160 篇 物理学
    • 118 篇 生物学
    • 92 篇 统计学(可授理学、...
    • 45 篇 化学
    • 36 篇 系统科学
  • 175 篇 管理学
    • 101 篇 管理科学与工程(可...
    • 82 篇 图书情报与档案管...
  • 74 篇 医学
    • 66 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 42 篇 药学(可授医学、理...
  • 18 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 16 篇 法学
  • 14 篇 农学
  • 11 篇 经济学
  • 7 篇 教育学
  • 4 篇 文学
  • 4 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 159 篇 pattern recognit...
  • 146 篇 image processing
  • 98 篇 image segmentati...
  • 76 篇 feature extracti...
  • 62 篇 shape
  • 55 篇 image reconstruc...
  • 52 篇 computer vision
  • 48 篇 cameras
  • 46 篇 support vector m...
  • 42 篇 robustness
  • 41 篇 image analysis
  • 38 篇 face recognition
  • 34 篇 humans
  • 31 篇 image edge detec...
  • 30 篇 pixel
  • 30 篇 principal compon...
  • 28 篇 object detection
  • 28 篇 data mining
  • 27 篇 image recognitio...
  • 26 篇 visualization

机构

  • 262 篇 institute of ima...
  • 241 篇 institute of ima...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 28 篇 institute of ima...
  • 25 篇 institute of med...
  • 21 篇 institute of ima...
  • 19 篇 image processing...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 16 篇 institute for pa...
  • 15 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...

作者

  • 173 篇 yang jie
  • 132 篇 jie yang
  • 60 篇 yuncai liu
  • 53 篇 huang xiaolin
  • 45 篇 pengfei shi
  • 23 篇 wang lisheng
  • 23 篇 zhou yue
  • 22 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 hong-bin shen
  • 19 篇 mou xuanqin
  • 19 篇 杨杰
  • 19 篇 kropatsch walter...
  • 17 篇 xuanqin mou
  • 17 篇 ping guo
  • 17 篇 yue zhou
  • 17 篇 gu yun
  • 16 篇 r. sablatnig
  • 16 篇 yu qiao
  • 16 篇 jian liu

语言

  • 1,360 篇 英文
  • 48 篇 中文
  • 39 篇 其他
检索条件"机构=Institute of Pattern Recognition and Image"
1444 条 记 录,以下是291-300 订阅
排序:
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Random Fourier features via fast surrogate leverage weighted sampling
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Fanghui Huang, Xiaolin Chen, Yudong Yang, Jie Suykens, Johan A.K. Department of Electrical Engineering [ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Institute of Medical Robotics Shanghai Jiao Tong University China School of Operations Research and Information Engineering Cornell University United States
In this paper, we propose a fast surrogate leverage weighted sampling strategy to generate refined random Fourier features for kernel approximation. Compared to the current state-of-the-art method that uses the levera... 详细信息
来源: 评论
A novel fast object tracking method based on hierarchical block matching
A novel fast object tracking method based on hierarchical bl...
收藏 引用
2017 IEEE International Conference on Applied System Innovation, ICASI 2017
作者: Yang, Zhi-Hui Liu, Jie-Fei Institute of Image Processing and Pattern Recognition Beijing100144 China
Research on object tracking has been an active field because of its fundamental roles in surveillance and monitoring. In this paper, a new adaptive algorithm for fast target tracking based on hierarchical block matchi... 详细信息
来源: 评论
Adversarial attack type I: Cheat classifiers by significant changes
arXiv
收藏 引用
arXiv 2018年
作者: Tang, Sanli Huang, Xiaolin Chen, Mingjian Sun, Chengjin Yang, Jie Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat clas... 详细信息
来源: 评论
Microarray camera image segmentation with Faster-RCNN
Microarray camera image segmentation with Faster-RCNN
收藏 引用
International Conference on Applied System Innovation (ICASI)
作者: Jiancheng Zou Rui Song Institute of Image Processing and Pattern Recognition North China University of Technology Shijingshan District Beijing China
A novel method of image segmentation based on Faster-RCNN and microarray camera (3 × 3) is proposed in this paper, we use the microarray camera to obtain nine images in the same scene and use nine array images to... 详细信息
来源: 评论
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
arXiv
收藏 引用
arXiv 2020年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine Ucsd La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia Zhaw DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning ... 详细信息
来源: 评论
Deep model-based feature extraction for predicting protein subcellular localizations from bio-images
收藏 引用
Frontiers of Computer Science 2017年 第2期11卷 243-252页
作者: Wei SHAO Yi DING Hong-Bin SHEN Daoqiang ZHANG School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai 200240 China
Protein subcellular localization prediction is im- portant for studying the function of proteins. Recently, as significant progress has been witnessed in the field of mi- croscopic imaging, automatically determining t... 详细信息
来源: 评论
Indefinite kernel spectral learning  30
Indefinite kernel spectral learning
收藏 引用
30th Benelux Conference on Artificial Intelligence, BNAIC 2018
作者: Mehrkanoon, Siamak Huang, Xiaolin Suykens, Johan A.K. Dept. of Data Science and Knowledge Engineering Maastricht University Netherlands Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China KU Leuven ESAT-STADIUS Kasteelpark Arenberg 10 LeuvenB-3001 Belgium
This paper introduces the indefinite learning in the framework of least squares support vector machines (LS-SVM). Here the analysis of the Multi-Class Semi-Supervised Kernel Spectral Clustering (MSS-KSC) model with in... 详细信息
来源: 评论
Author Correction: A comprehensive multi-domain dataset for mitotic figure detection
收藏 引用
Scientific data 2024年 第1期11卷 717页
作者: Marc Aubreville Frauke Wilm Nikolas Stathonikos Katharina Breininger Taryn A Donovan Samir Jabari Mitko Veta Jonathan Ganz Jonas Ammeling Paul J van Diest Robert Klopfleisch Christof A Bertram Technische Hochschule Ingolstadt Ingolstadt Germany. marc.aubreville@thi.de. Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany. Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany. Department of Pathology University Medical Center Utrecht Utrecht The Netherlands. Schwarzman Animal Medical Center New York USA. Department of Neuropathology Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany. Medical Image Analysis Group Eindhoven University of Technology Eindhoven the Netherlands. Technische Hochschule Ingolstadt Ingolstadt Germany. Institute of Veterinary Pathology Freie Universität Berlin Berlin Germany. Institute of Pathology University of Veterinary Medicine Vienna Vienna Austria.
来源: 评论
A regularization approach for instance-based superset label learning
arXiv
收藏 引用
arXiv 2019年
作者: Gong, Chen Liu, Tongliang Tang, Yuanyan Yang, Jian Yang, Jie Tao, Dacheng School of Computer Science and Engineering Nanjing University of Science and Technology Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University School of Software Faculty of Engineering and Information Technology University of Technology Sydney UltimoNSW2007 Australia Faculty of Science and Technology University of Macau Macau999078 China College of Computer Science Chongqing University Chongqing400000 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney J12/318 Cleveland St DarlingtonNSW2008 Australia
Different from the traditional supervised learning in which each training example has only one explicit label, Superset Label Learning (SLL) refers to the problem that a training example can be associated with a set o... 详细信息
来源: 评论