咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 19 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 6 篇 生物工程
    • 3 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 19 篇 理学
    • 7 篇 数学
    • 7 篇 生物学
    • 5 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 天文学
    • 2 篇 地质学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 3 篇 semantics
  • 2 篇 image matching
  • 2 篇 data mining
  • 2 篇 image classifica...
  • 2 篇 forecasting
  • 1 篇 rf pulse
  • 1 篇 filters
  • 1 篇 noise reduction
  • 1 篇 techniques: imag...
  • 1 篇 space vehicles
  • 1 篇 generative adver...
  • 1 篇 inverse document...
  • 1 篇 statistics
  • 1 篇 term frequency
  • 1 篇 image segmentati...
  • 1 篇 sorting
  • 1 篇 vector spaces
  • 1 篇 zero-shot learni...
  • 1 篇 boundary conditi...
  • 1 篇 gps

机构

  • 5 篇 university of ch...
  • 4 篇 cas center for e...
  • 4 篇 the pattern reco...
  • 3 篇 pattern recognit...
  • 3 篇 institute of pat...
  • 3 篇 pattern recognit...
  • 3 篇 center for resea...
  • 3 篇 center for resea...
  • 2 篇 centre for artif...
  • 2 篇 oppo research se...
  • 2 篇 the school of co...
  • 2 篇 key laboratory o...
  • 2 篇 artificial intel...
  • 2 篇 department of co...
  • 2 篇 college of publi...
  • 2 篇 pattern recognit...
  • 2 篇 the school of co...
  • 2 篇 the intelligent ...
  • 2 篇 the provincial k...
  • 1 篇 image processing...

作者

  • 6 篇 deng weihong
  • 4 篇 li wenjie
  • 4 篇 gao guangwei
  • 3 篇 huang kaiqi
  • 3 篇 ma zhanyu
  • 3 篇 li juncheng
  • 3 篇 yang jian
  • 3 篇 lin chia-wen
  • 2 篇 yang yi
  • 2 篇 meng zibo
  • 2 篇 hu xiao
  • 2 篇 wu qinyi
  • 2 篇 zhou joey tianyi
  • 2 篇 mi hong
  • 2 篇 wang mei
  • 2 篇 qi guo-jun
  • 2 篇 zhong yixin
  • 2 篇 liang kongming
  • 2 篇 zhao xin
  • 2 篇 liu ping

语言

  • 27 篇 英文
  • 4 篇 中文
  • 3 篇 其他
检索条件"机构=Institute of Pattern Recognition and Intelligence System"
34 条 记 录,以下是11-20 订阅
排序:
Radio frequency interference mitigation using pseudoinverse learning autoencoders
收藏 引用
Research in Astronomy and Astrophysics 2020年 第8期20卷 121-128页
作者: Hong-Feng Wang Mao Yuan Qian Yin Ping Guo Wei-Wei Zhu Di Li Si-Bo Feng Image Processing and Pattern Recognition Laboratory School of Artificial IntelligenceBeijing Normal UniversityBeijing 100875China CAS Key Laboratory of FAST National Astronomical ObservatoriesChinese Academy of SciencesBeijing 100101China School of Information Management Dezhou UniversityDezhou 253023China Image Processing and Pattern Recognition Laboratory School of System ScienceBeijing Normal UniversityBeijing 100875China Institute for Astronomical Science Dezhou UniversityDezhou 253023China University of Chinese Academy of Sciences Beijing 100049China Hanvon Technology Co. LtdBeijing 100193China NAOC-UKZN Computational Astrophysics Centre University of KwaZulu-NatalDurban 4000South Africa
Radio frequency interference(RFI)is an important challenge in radio *** comes from various sources and increasingly impacts astronomical observation as telescopes become more *** this study,we propose a fast and effec... 详细信息
来源: 评论
RF power design optimization in MRI system
收藏 引用
Magnetic Resonance Letters 2021年 第1期1卷 89-98页
作者: Baogui Zhang Kun Wang Tianzi Jiang Brainnetome Center National Laboratory of Pattern Recognition(Institute of AutomationChinese Academy of Sciences)Beijing100190China GE Hangwei Medical System Co.Ltd Beijing100176China University of Chinese Academy of Sciences Beijing100190China CAS Center for Excellence in Brain Science and Intelligence Technology(Institute of Automation Chinese Academy of Sciences)Beijing100190China The Queensland Brain Institute(University of Queensland) BrisbaneQueenslandAustralia
Magnetic resonance image quality and patient safety have been the focus of engineering and research ever since the invention of equipment in the early *** high field(or ultrahigh field)MRI systems,the emerging techniq... 详细信息
来源: 评论
A novel TSK fuzzy system incorporating multiview collaborative transfer learning for personalized epileptic EEG detection
arXiv
收藏 引用
arXiv 2021年
作者: Li, Andong Deng, Zhaohong Lou, Qiongdan Choi, Kup-Sze Shen, Hongbin Wang, Shitong School of Artificial Intelligence and Computer Science Jiangnan University Jiangsu Key Laboratory of Digital Design and Software Technology Wuxi214122 China Centre for Smart Health Hong Kong Polytechnic University Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
—In clinical practice, electroencephalography (EEG) plays an important role in the diagnosis of epilepsy. EEG-based computer-aided diagnosis of epilepsy can greatly improve the accuracy of epilepsy detection while re... 详细信息
来源: 评论
Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Yang, Jian Qi, Guo-Jun Lin, Chia-Wen Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China School of Communication and Information Engineering Shanghai University Shanghai200444 China School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China Research Center for Industries of the Future the School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs. However, existing methods result in the loss of middle-layer features due to acti... 详细信息
来源: 评论
Omni-supervised Facial Expression recognition via Distilled Data
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ping Wei, Yunchao Meng, Zibo Deng, Weihong Zhou, Joey Tianyi Yang, Yi Center for Frontier AI Research Agency for Science Technology and Research Singapore Singapore Institute of information science Beijing Jiaotong University Beijing China Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China InnoPeak Technology Inc. Palo Alto United States
Facial expression plays an important role in understanding human emotions. Most recently, deep learning based methods have shown promising for facial expression recognition. However, the performance of the current sta... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Point adversarial self mining: A simple method for facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ping Lin, Yuewei Meng, Zibo Lu, Lu Deng, Weihong Zhou, Joey Tianyi Yang, Yi Institute of High Performance Computing Agency for Science Technology and Research Singapore Singapore Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China Brookhaven National Laboratory UptonNY United States InnoPeak Technology Inc. Palo AltoCA United States Key Laboratory of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai China
In this paper, we propose a simple yet effective approach, named Point Adversarial Self Mining (PASM), to improve the recognition accuracy in facial expression recognition. Unlike previous works focusing on designing ... 详细信息
来源: 评论
Semi-heterogeneous three-way joint embedding network for sketch-based image retrieval
arXiv
收藏 引用
arXiv 2019年
作者: Lei, Jianjun Song, Yuxin Peng, Bo Ma, Zhanyu Shao, Ling Song, Yi-Zhe School of Electrical and Information Engineering Tianjin University Tianjin300072 China Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing100876 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates SketchX Lab Centre for Vision Speech and Signal Processing University of Surrey Surrey GuildfordGU2 7XH United Kingdom
Sketch-based image retrieval (SBIR) is a challenging task due to the large cross-domain gap between sketches and natural images. How to align abstract sketches and natural images into a common high-level semantic spac... 详细信息
来源: 评论
GOT-10k: A large high-diversity benchmark for generic object tracking in the wild
arXiv
收藏 引用
arXiv 2018年
作者: Huang, Lianghua Zhao, Xin Huang, Kaiqi Center for Research on Intelligent System and Engineering Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Center for Research on Intelligent System and Engineering National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China CAS Center for Excellence in Brain Science and Intelligence Technology 100190
In this work, we introduce a large high-diversity database for generic object tracking, called GOT-10k. GOT-10k is backboned by the semantic hierarchy of WordNet [1]. It populates a majority of 563 object classes and ... 详细信息
来源: 评论
Deep crisp boundaries: From boundaries to higher-level tasks
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Yupei Zhao, Xin Li, Yin Huang, Kaiqi Center for Research on Intelligent System and Engineering Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Department of Biostatistics and Medical Informatics Department of Computer Sciences Univeristy of Wisconsin-Madison Center for Research on Intelligent System and Engineering National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China CAS Center for Excellence in Brain Science and Intelligence Technology 100190
Edge detection has made significant progress with the help of deep Convolutional Networks (ConvNet). These ConvNet based edge detectors have approached human level performance on standard benchmarks. We provide a syst... 详细信息
来源: 评论