咨询与建议

限定检索结果

文献类型

  • 134 篇 会议
  • 113 篇 期刊文献

馆藏范围

  • 247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 169 篇 工学
    • 107 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 47 篇 信息与通信工程
    • 43 篇 生物工程
    • 34 篇 光学工程
    • 33 篇 控制科学与工程
    • 26 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 生物医学工程(可授...
    • 13 篇 化学工程与技术
    • 12 篇 电气工程
    • 5 篇 仪器科学与技术
    • 4 篇 石油与天然气工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 交通运输工程
    • 3 篇 网络空间安全
  • 97 篇 理学
    • 44 篇 数学
    • 41 篇 生物学
    • 30 篇 物理学
    • 15 篇 化学
    • 15 篇 统计学(可授理学、...
  • 34 篇 管理学
    • 24 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 6 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 11 篇 feature extracti...
  • 10 篇 computer vision
  • 10 篇 training
  • 9 篇 object detection
  • 7 篇 deep learning
  • 7 篇 three-dimensiona...
  • 6 篇 generative adver...
  • 6 篇 image segmentati...
  • 6 篇 face recognition
  • 6 篇 convolution
  • 6 篇 estimation
  • 6 篇 shape
  • 6 篇 convolutional ne...
  • 5 篇 semantic segment...
  • 5 篇 deconvolution
  • 5 篇 anomaly detectio...
  • 5 篇 predictive model...
  • 5 篇 codes
  • 5 篇 biomedical imagi...
  • 5 篇 image reconstruc...

机构

  • 62 篇 shenyang institu...
  • 61 篇 university of ch...
  • 59 篇 institutes for r...
  • 57 篇 key laboratory o...
  • 33 篇 shenzhen institu...
  • 23 篇 guangdong key la...
  • 15 篇 guangdong key la...
  • 12 篇 national enginee...
  • 11 篇 computer vision ...
  • 11 篇 shanghai enginee...
  • 10 篇 college of compu...
  • 8 篇 szu branch shenz...
  • 7 篇 college of elect...
  • 7 篇 college of elect...
  • 7 篇 guangdong provin...
  • 5 篇 key laboratory o...
  • 5 篇 computer vision ...
  • 5 篇 shenzhen institu...
  • 5 篇 the key lab of i...
  • 5 篇 peng cheng labor...

作者

  • 34 篇 shen linlin
  • 15 篇 qiu guoping
  • 13 篇 liu yunpeng
  • 11 篇 xie weicheng
  • 10 篇 qi feng
  • 9 篇 liu haozhe
  • 9 篇 luo haibo
  • 9 篇 wang hesheng
  • 8 篇 zhu feng
  • 8 篇 linlin shen
  • 7 篇 song siyang
  • 7 篇 hesheng wang
  • 7 篇 feng qi
  • 7 篇 luo cheng
  • 7 篇 yunpeng liu
  • 7 篇 s. kevin zhou
  • 7 篇 zhao huaici
  • 6 篇 huang jiwu
  • 6 篇 hou xianxu
  • 6 篇 wang guangming

语言

  • 233 篇 英文
  • 14 篇 其他
检索条件"机构=Institute of Robotics and Intelligent Information Processing"
247 条 记 录,以下是51-60 订阅
排序:
Towards High-resolution 3D Anomaly Detection via Group-Level Feature Contrastive Learning  24
Towards High-resolution 3D Anomaly Detection via Group-Level...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zhu, Hongze Xie, Guoyang Hou, Chengbin Dai, Tao Gao, Can Wang, Jinbao Shen, Linlin National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science City University of Hong Kong Hong Kong Hong Kong Department of Intelligent Manufacturing CATL Ningde China Fuzhou Fuyao Institute for Advanced Study Fuyao University of Science and Technology Fuzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
High-resolution point clouds (HRPCD) anomaly detection (AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they ... 详细信息
来源: 评论
Anomaly detection of EMU trains based on line-scan image registration  7
Anomaly detection of EMU trains based on line-scan image reg...
收藏 引用
7th Global intelligent Industry Conference, GIIC 2024
作者: Fang, Lei Shi, Zelin Xiao, Chuanmin Liu, Yunpeng Pang, Mingqi Zhao, Enbo Faculty of Robot Science and Engineering Northeastern University Shenyang110169 China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang110016 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China Third Military Representative Room in Shenyang Area Air Force Equipment Shenyang110016 China
Anomaly detection based on template image registration is one of the methods used to detect anomalies of objects with similar structures. However, the imaging device of the Electronic Multiple Units (EMU) train is a l... 详细信息
来源: 评论
The Simulation of the Terahertz Modulator by CMOS Process  3
The Simulation of the Terahertz Modulator by CMOS Process
收藏 引用
3rd International Conference on Defence Technology, ICDT 2022
作者: Zhang, Chenyu Hu, Nairui Liu, Zhaoyang School of Electronic Information Engineering Shenyang Aerospace University Liaoning Province Shenyang110136 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110169 China Key Laboratory of Liaoning Province in Terahertz Imaging and Sensing Shenyang110169 China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang110169 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China
The paper introduced the simulation of the terahertz modulator in complementary metal-oxide-semiconductor (CMOS) process. The modulator is composed of a metal split-ring resonator (SRR), CMOS, semiconductor dielectric... 详细信息
来源: 评论
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION FOR UNSUPERVISED DOMAIN ADAPTATION
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Li, Yong Li, Desheng Lu, Yuwu Gao, Can Wang, Wenjing Lu, Jianglin College of Computer Science and Software Engineering Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing China
Unsupervised domain adaptation (UDA) aims to transfer knowledge between different domains. Most of the existing UDA methods try to align the conditional distribution between the source and target domains by utilizing ... 详细信息
来源: 评论
Shift from Texture-bias to Shape-bias: Edge Deformation-based Augmentation for Robust Object Recognition
Shift from Texture-bias to Shape-bias: Edge Deformation-base...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Xilin He Qinliang Lin Cheng Luo Weicheng Xie Siyang Song Feng Liu Linlin Shen Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University Shenzhen Institue of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing University of Leicester
Recent studies have shown the vulnerability of CNNs under perturbation noises, which is partially caused by the reason that the well-trained CNNs are too biased toward the object texture, i.e., they make predictions m...
来源: 评论
Sea Scene Classification from Synthetic Aperture Radar Images Using A modified MobileNetV1  3
Sea Scene Classification from Synthetic Aperture Radar Image...
收藏 引用
3rd International Conference on Signal Image processing and Communication, ICSIPC 2023
作者: Wang, Zhongbo He, Miao Ding, Qinghai Luo, Haibo Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang110016 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China University of Chinese Academy of Sciences Beijing100049 China Space Star Technology Co Ltd. Beijing100086 China
Synthetic aperture radar (SAR) has a special ability to work in any type of inclement weather, and is a very suitable tool for Ocean surveillance. Scene classification is an essential pre-task of other computer vision... 详细信息
来源: 评论
Fast Relocalization and Loop Closing in Keyframe-Based 3D LiDAR SLAM
Fast Relocalization and Loop Closing in Keyframe-Based 3D Li...
收藏 引用
2022 IEEE International Conference on robotics and Biomimetics, ROBIO 2022
作者: Cui, Yunge Wu, Qingxiao Hao, Yingming Kong, Yanzi Lin, Zhiyuan Zhu, Feng Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang110016 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China University of Chinese Academy of Sciences Beijing China
Relocalization and Loop closing play important roles in robotic simultaneous localization and mapping (SLAM). In this work, we propose a light-weight bag of words (BoW) method for the relocalization and loop closing i... 详细信息
来源: 评论
Distributed Autonomous Swarm Formation for Dynamic Network Bridging
Distributed Autonomous Swarm Formation for Dynamic Network B...
收藏 引用
IEEE Conference on Computer Communications Workshops, INFOCOM Wksps
作者: Raffaele Galliera Thies Mohlenhof Alessandro Amato Daniel Duran Kristen Brent Venable Niranjan Suri Institute for Human & Machine Cognition (IHMC) Department of Intelligent Systems & Robotics The University of West Florida (UWF) Pensacola FL USA Fraunhofer Institute for Communication Information Processing and Ergonomics (FKIE) Wachtberg Germany US Army Research Laboratory (ARL) Adelphi MD USA
Effective operation and seamless cooperation of robotic systems are a fundamental component of next-generation technologies and applications. In contexts such as disaster response, swarm operations require coordinated... 详细信息
来源: 评论
Refined Infrared Small Target Detection Scheme with Single-Point Supervision
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Jinmiao Shi, Zelin Yu, Chuang Liu, Yunpeng Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences China Shenyang Institute of Automation Chinese Academy of Sciences China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Recently, infrared small target detection with single-point supervision has attracted extensive attention. However, the detection accuracy of existing methods has difficulty meeting actual needs. Therefore, we propose... 详细信息
来源: 评论
EDA: Enhanced Domain-Adversarial Training for Anatomical Landmark Detection  22
EDA: Enhanced Domain-Adversarial Training for Anatomical Lan...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Yang, Fan Zhou, S. Kevin School of Biomedical Engineering Division of Life Sciences and Medicine University of Science and Technology of China Anhui Hefei 230026 China Center for Medical Imaging Robotics Analytic Computing & Learning (MIRACLE) Suzhou Institute for Advanced Research University of Science and Technology of China Jiangsu Suzhou 215123 China Key Laboratory of Precision and Intelligent Chemistry Ustc Anhui Hefei 230026 China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology Cas Beijing 100190 China
Manually annotating anatomical landmarks in medical images requires experienced clinicians and is a labor-intensive process. However, recent AI-assisted methods for landmark detection often rely on the training and te... 详细信息
来源: 评论