咨询与建议

限定检索结果

文献类型

  • 197 篇 会议
  • 158 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 358 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 143 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 38 篇 生物工程
    • 30 篇 光学工程
    • 19 篇 机械工程
    • 17 篇 化学工程与技术
    • 17 篇 交通运输工程
    • 14 篇 生物医学工程(可授...
    • 12 篇 电气工程
    • 10 篇 建筑学
    • 9 篇 材料科学与工程(可...
    • 8 篇 仪器科学与技术
    • 8 篇 土木工程
    • 7 篇 农业工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 电子科学与技术(可...
  • 115 篇 理学
    • 61 篇 数学
    • 37 篇 生物学
    • 29 篇 物理学
    • 17 篇 化学
    • 17 篇 统计学(可授理学、...
    • 12 篇 系统科学
  • 62 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 15 篇 医学
    • 15 篇 临床医学
    • 11 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学

主题

  • 21 篇 feature extracti...
  • 16 篇 semantics
  • 14 篇 training
  • 12 篇 convolution
  • 9 篇 computer vision
  • 8 篇 object detection
  • 7 篇 semantic segment...
  • 7 篇 deep learning
  • 7 篇 task analysis
  • 7 篇 cameras
  • 6 篇 face recognition
  • 6 篇 robots
  • 6 篇 computational mo...
  • 5 篇 image enhancemen...
  • 5 篇 generative adver...
  • 5 篇 three-dimensiona...
  • 5 篇 prototypes
  • 5 篇 anomaly detectio...
  • 5 篇 neural networks
  • 5 篇 robot sensing sy...

机构

  • 47 篇 shenzhen institu...
  • 43 篇 school of softwa...
  • 36 篇 college of compu...
  • 33 篇 institute of art...
  • 27 篇 school of softwa...
  • 20 篇 national enginee...
  • 18 篇 institute of art...
  • 18 篇 szu branch shenz...
  • 17 篇 guangdong key la...
  • 16 篇 computer vision ...
  • 11 篇 school of softwa...
  • 8 篇 institute of art...
  • 8 篇 computer vision ...
  • 7 篇 wormpex ai resea...
  • 7 篇 national key lab...
  • 7 篇 xi'an jiaotong u...
  • 7 篇 guangdong provin...
  • 6 篇 computer vision ...
  • 5 篇 guangdong key la...
  • 5 篇 school of softwa...

作者

  • 38 篇 shen linlin
  • 20 篇 shaoyi du
  • 15 篇 zhou jie
  • 15 篇 du shaoyi
  • 14 篇 yuehu liu
  • 14 篇 liu yuehu
  • 13 篇 gao can
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 11 篇 lai zhihui
  • 10 篇 tian zhiqiang
  • 10 篇 gao yue
  • 10 篇 zhiqiang tian
  • 9 篇 tan shunquan
  • 9 篇 wang fei
  • 8 篇 chi zhang
  • 8 篇 li yaochen
  • 8 篇 liu feng
  • 7 篇 huang jiwu
  • 7 篇 liu haozhe

语言

  • 336 篇 英文
  • 19 篇 其他
  • 4 篇 中文
检索条件"机构=Institute of Robotics and Software Engineering"
358 条 记 录,以下是91-100 订阅
排序:
ColorPCR: Color Point Cloud Registration with Multi-Stage Geometric-Color Fusion
ColorPCR: Color Point Cloud Registration with Multi-Stage Ge...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Juncheng Mu Lin Bie Shaoyi Du Yue Gao BNRist THUIBCS School of Software Tsinghua University National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications and Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University
Point cloud registration is still a challenging and open problem. For example, when the overlap between two point clouds is extremely low, geo-only features may be not suf-ficient. Therefore, it is important to furthe... 详细信息
来源: 评论
Towards High-resolution 3D Anomaly Detection via Group-Level Feature Contrastive Learning  24
Towards High-resolution 3D Anomaly Detection via Group-Level...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zhu, Hongze Xie, Guoyang Hou, Chengbin Dai, Tao Gao, Can Wang, Jinbao Shen, Linlin National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science City University of Hong Kong Hong Kong Hong Kong Department of Intelligent Manufacturing CATL Ningde China Fuzhou Fuyao Institute for Advanced Study Fuyao University of Science and Technology Fuzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
High-resolution point clouds (HRPCD) anomaly detection (AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they ... 详细信息
来源: 评论
Electric Vehicle Physical Parameters Identification  48
Electric Vehicle Physical Parameters Identification
收藏 引用
48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022
作者: Maia, Ricardo Mendes, Jerome Araujo, Rui University of Coimbra Institute of Systems and Robotics Department of Electrical and Computer Engineering Pólo II CoimbraPT-3030-290 Portugal Critical Software S.A. Pq. Ind. de Taveiro Lt 49 CoimbraPT-3045-504 Portugal
Electric vehicle physical parameters highly influence the modeling of its different systems. Although a simulation using data acquired from field tests can have satisfactory results, the parameters inaccuracy, due to ... 详细信息
来源: 评论
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION FOR UNSUPERVISED DOMAIN ADAPTATION
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Li, Yong Li, Desheng Lu, Yuwu Gao, Can Wang, Wenjing Lu, Jianglin College of Computer Science and Software Engineering Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing China
Unsupervised domain adaptation (UDA) aims to transfer knowledge between different domains. Most of the existing UDA methods try to align the conditional distribution between the source and target domains by utilizing ... 详细信息
来源: 评论
Shift from Texture-bias to Shape-bias: Edge Deformation-based Augmentation for Robust Object Recognition
Shift from Texture-bias to Shape-bias: Edge Deformation-base...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Xilin He Qinliang Lin Cheng Luo Weicheng Xie Siyang Song Feng Liu Linlin Shen Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University Shenzhen Institue of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing University of Leicester
Recent studies have shown the vulnerability of CNNs under perturbation noises, which is partially caused by the reason that the well-trained CNNs are too biased toward the object texture, i.e., they make predictions m...
来源: 评论
Shearlet-Based Structure-Aware Filtering for Hyperspectral and LiDAR Data Classification
收藏 引用
Journal of Remote Sensing 2021年 第1期2021卷 237-261页
作者: Sen Jia Zhangwei Zhan Meng Xu College of Computer Science and Software Engineering Shenzhen UniversityShenzhenChina Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the Ministry of Natural Resources Shenzhen UniversityShenzhenChina SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhenChina
The joint interpretation of hyperspectral images(HSIs)and light detection and ranging(LiDAR)data has developed rapidly in recent years due to continuously evolving image processing ***,most feature extraction methods ... 详细信息
来源: 评论
Generalizing 6-DoF Grasp Detection via Domain Prior Knowledge
Generalizing 6-DoF Grasp Detection via Domain Prior Knowledg...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Haoxiang Ma Modi Shi Boyang Gao Di Huang State Key Laboratory of Software Development Environment Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China School of Computer Science and Technology Harbin Institute of Technology Harbin China Geometry Robotics
We focus on the generalization ability of the 6-DoF grasp detection method in this paper. While learning-based grasp detection methods can predict grasp poses for unseen ob-jects using the grasp distribution learned f... 详细信息
来源: 评论
A Multi-stage Prediction Framework for Pest Identification
A Multi-stage Prediction Framework for Pest Identification
收藏 引用
IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)
作者: Yanan Chen Miao Chen Minghui Guo Fangfang Wang Jianji Wang National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University School of Software Engineering Xi’an Jiaotong University
With the development of computer vision technology and smart agriculture, deep learning techniques have been widely applied to crop pest identification tasks. However, existing studies do not consider the problem of l...
来源: 评论
Review of Inference Time Prediction Approaches of DNN: Emphasis on Service robots with cloud-edge-device architecture
Review of Inference Time Prediction Approaches of DNN: Empha...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Tian Xiang Qiwei Meng Ji Zhang Beibei Zhang Wei Song Anhuan Xie Jason Gu Research Center for Intelligent Robotics Research Institute of Interdisciplinary Innovation Zhejiang Laboratory Hangzhou China Department of Mechanical and Automation Engineering T Stone Robotics Institute The Chinese University of Hong Kong HKSAR China Research Center for Intelligent Computing Software Research Institute of Intelligent Computing Zhejiang Laboratory Hangzhou China Electrical and Computer Engineering Dalhousie University Halifax Canada
In recent years, the global robot market has witnessed substantial growth, particularly in the domain of service robots. Despite their expanding presence, service robots encounter limitations when operating autonomous...
来源: 评论
Towards Generalizable Multi-Object Tracking
Towards Generalizable Multi-Object Tracking
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zheng Qin Le Wang Sanping Zhou Panpan Fu Gang Hua Wei Tang National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University School of Software Engineering Xi'an Jiaotong University Wormpex AI Research University of Illinois at Chicago
Multi-Object Tracking (MOT) encompasses various tracking scenarios, each characterized by unique traits. Ef-fective trackers should demonstrate a high degree of gen-eralizability across diverse scenarios. However, exi... 详细信息
来源: 评论