咨询与建议

限定检索结果

文献类型

  • 197 篇 会议
  • 158 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 358 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 143 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 38 篇 生物工程
    • 30 篇 光学工程
    • 19 篇 机械工程
    • 17 篇 化学工程与技术
    • 17 篇 交通运输工程
    • 14 篇 生物医学工程(可授...
    • 12 篇 电气工程
    • 10 篇 建筑学
    • 9 篇 材料科学与工程(可...
    • 8 篇 仪器科学与技术
    • 8 篇 土木工程
    • 7 篇 农业工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 电子科学与技术(可...
  • 115 篇 理学
    • 61 篇 数学
    • 37 篇 生物学
    • 29 篇 物理学
    • 17 篇 化学
    • 17 篇 统计学(可授理学、...
    • 12 篇 系统科学
  • 62 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 15 篇 医学
    • 15 篇 临床医学
    • 11 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学

主题

  • 21 篇 feature extracti...
  • 16 篇 semantics
  • 14 篇 training
  • 12 篇 convolution
  • 9 篇 computer vision
  • 8 篇 object detection
  • 7 篇 semantic segment...
  • 7 篇 deep learning
  • 7 篇 task analysis
  • 7 篇 cameras
  • 6 篇 face recognition
  • 6 篇 robots
  • 6 篇 computational mo...
  • 5 篇 image enhancemen...
  • 5 篇 generative adver...
  • 5 篇 three-dimensiona...
  • 5 篇 prototypes
  • 5 篇 anomaly detectio...
  • 5 篇 neural networks
  • 5 篇 robot sensing sy...

机构

  • 47 篇 shenzhen institu...
  • 43 篇 school of softwa...
  • 36 篇 college of compu...
  • 33 篇 institute of art...
  • 27 篇 school of softwa...
  • 20 篇 national enginee...
  • 18 篇 institute of art...
  • 18 篇 szu branch shenz...
  • 17 篇 guangdong key la...
  • 16 篇 computer vision ...
  • 11 篇 school of softwa...
  • 8 篇 institute of art...
  • 8 篇 computer vision ...
  • 7 篇 wormpex ai resea...
  • 7 篇 national key lab...
  • 7 篇 xi'an jiaotong u...
  • 7 篇 guangdong provin...
  • 6 篇 computer vision ...
  • 5 篇 guangdong key la...
  • 5 篇 school of softwa...

作者

  • 38 篇 shen linlin
  • 20 篇 shaoyi du
  • 15 篇 zhou jie
  • 15 篇 du shaoyi
  • 14 篇 yuehu liu
  • 14 篇 liu yuehu
  • 13 篇 gao can
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 11 篇 lai zhihui
  • 10 篇 tian zhiqiang
  • 10 篇 gao yue
  • 10 篇 zhiqiang tian
  • 9 篇 tan shunquan
  • 9 篇 wang fei
  • 8 篇 chi zhang
  • 8 篇 li yaochen
  • 8 篇 liu feng
  • 7 篇 huang jiwu
  • 7 篇 liu haozhe

语言

  • 336 篇 英文
  • 19 篇 其他
  • 4 篇 中文
检索条件"机构=Institute of Robotics and Software Engineering"
358 条 记 录,以下是171-180 订阅
排序:
Towards Fluorescence-Guided Autonomous Robotic Partial Nephrectomy on Novel Tissue-Mimicking Hydrogel Phantoms
arXiv
收藏 引用
arXiv 2025年
作者: Kilmer, Ethan Chen, Joseph Ge, Jiawei Sarda, Preksha Cha, Richard Cleary, Kevin Shepard, Lauren Ghazi, Ahmed Ezzat Scheikl, Paul Maria Krieger, Axel Laboratory of Computational Sensing and Robotics Johns Hopkins University BaltimoreMD21218 United States Department of Computer Science and Software Engineering Rose-Hulman Institute of Technology Terre HauteIN47803 United States Sheikh Zayed Institute for Pediatric Surgical Innovation Children’s National Hospital WashingtonDC20010 United States Department of Urology Johns Hopkins University BaltimoreMD21218 United States
Autonomous robotic systems hold potential for improving renal tumor resection accuracy and patient outcomes. We present a fluorescence-guided robotic system capable of planning and executing incision paths around exop... 详细信息
来源: 评论
Lprr: Locality Preserving Robust Regression Based Sparse Feature Extraction
SSRN
收藏 引用
SSRN 2023年
作者: Lai, Zhihui Zhu, Yufei Zhou, Jie Kong, Heng The College of Computer Science and Software Engineering Shenzhen University Guangdong Shenzhen518060 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Guangdong Shenzhen518060 China The Department of Breast and Thyroid Surgery BaoAn Central Hospital of Shenzhen Guangdong Shenzhen518102 China
Jointly sparse projection learning attracts considerable attention due to its strong interpretability in feature extraction. To address the challenges related to weak discriminating representation in supervised featur... 详细信息
来源: 评论
Social Interpretable Tree for Pedestrian Trajectory Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Shi, Liushuai Wang, Le Long, Chengjiang Zhou, Sanping Zheng, Fang Zheng, Nanning Hua, Gang School of Software Engineering Xi'an Jiaotong University China Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China JD Finance America Corporation United States Wormpex AI Research United States
Understanding the multiple socially-acceptable future behaviors is an essential task for many vision applications. In this paper, we propose a tree-based method, termed as Social Interpretable Tree (SIT), to address t... 详细信息
来源: 评论
Hierarchical Decompositions of Stochastic Pursuit-Evasion Games
Hierarchical Decompositions of Stochastic Pursuit-Evasion Ga...
收藏 引用
IEEE Conference on Decision and Control
作者: Yue Guan Mohammad Afshari Qifan Zhang Panagiotis Tsiotras Candidate With the School of Aerospace Engineering Georgia Institute of Technology Atlanta GA USA Postdoctoral Fellow With the Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA Currently a Software Engineer at Google Mountain View CA USA Georgia Tech School of Aerospace Engineering Georgia Institute of Technology Atlanta GA USA
In this work we present a hierarchical framework for solving discrete stochastic pursuit-evasion games (PEGs) in large grid worlds. Given a partition of the grid world into superstates, the proposed approach creates a... 详细信息
来源: 评论
Delving into the Scale Variance Problem in Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Junliang Zhao, Xiaodong Shen, Linlin Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
Object detection has made substantial progress in the last decade, due to the capability of convolution in extracting local context of objects. However, the scales of objects are diverse and current convolution can on... 详细信息
来源: 评论
Selective Multi-Scale Learning for Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Junliang Lu, Weizeng Shen, Linlin Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Pyramidal networks are standard methods for multi-scale object detection. Current researches on feature pyramid networks usually adopt layer connections to collect features from certain levels of the feature hierarchy... 详细信息
来源: 评论
Spatio-temporal Collaborative Convolution for Video Action Recognition
Spatio-temporal Collaborative Convolution for Video Action R...
收藏 引用
2020 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2020
作者: Li, Xu Wen, Liqiang Wang, Jinjun Zeng, Ming School of Software Engineering Xi'An Jiaotong University Xi'an China School of Software and Microelectronics Peking University Beijing China Institute of Artificial Intelligence and Robotics Xi'An Jiaotong University Xi'an China
Although video action recognition has achieved great progress in recent years, it is still a challenging task due to the huge computational complexity. Designing a lightweight network is a feasible solution, but it ma... 详细信息
来源: 评论
Unsupervised Video Anomaly Detection with Self-Attention Based Feature Aggregating
Unsupervised Video Anomaly Detection with Self-Attention Bas...
收藏 引用
International Conference on Intelligent Transportation
作者: Zhenhao Ye Yanlong Li Zhichao Cui Yuehu Liu Li Li Le Wang Chi Zhang National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an Shaanxi China School of Software Engineering Xi'an Jiaotong University Xi'an Shaanxi China School of Electronics and Control Engineering Chang'an University Department of Automation BNRist Tsinghua University Beijing China
Anomaly detection in surveillance videos is a crucial and challenging task in the intelligent transportation systems. Previous methods utilize a memory module to store prototypical feature embeddings as normal pattern...
来源: 评论
MCTSteg: A Monte Carlo tree search-based reinforcement learning framework for universal non-additive steganography
arXiv
收藏 引用
arXiv 2021年
作者: Mo, Xianbo Tan, Shunquan Li, Bin Huang, Jiwu College of Computer Science and Software Engineering Shenzhen University College of Information Engineering Shenzhen University Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Recent research has shown that non-additive image steganographic frameworks effectively improve security performance through adjusting distortion distribution. However, as far as we know, all of the existing non-addit... 详细信息
来源: 评论
A survey: Deep learning for hyperspectral image classification with few labeled samples
收藏 引用
Neurocomputing 2021年 448卷 179-204页
作者: Sen Jia Shuguo Jiang Zhijie Lin Nanying Li Meng Xu Shiqi Yu College of Computer Science and Software Engineering Shenzhen University China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Department of Computer Science and Engineering Southern University of Science and Technology China
With the rapid development of deep learning technology and improvement in computing capability, deep learning has been widely used in the field of hyperspectral image (HSI) classification. In general, deep learning mo... 详细信息
来源: 评论