咨询与建议

限定检索结果

文献类型

  • 197 篇 会议
  • 158 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 358 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 143 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 38 篇 生物工程
    • 30 篇 光学工程
    • 19 篇 机械工程
    • 17 篇 化学工程与技术
    • 17 篇 交通运输工程
    • 14 篇 生物医学工程(可授...
    • 12 篇 电气工程
    • 10 篇 建筑学
    • 9 篇 材料科学与工程(可...
    • 8 篇 仪器科学与技术
    • 8 篇 土木工程
    • 7 篇 农业工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 电子科学与技术(可...
  • 115 篇 理学
    • 61 篇 数学
    • 37 篇 生物学
    • 29 篇 物理学
    • 17 篇 化学
    • 17 篇 统计学(可授理学、...
    • 12 篇 系统科学
  • 62 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 15 篇 医学
    • 15 篇 临床医学
    • 11 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学

主题

  • 21 篇 feature extracti...
  • 16 篇 semantics
  • 14 篇 training
  • 12 篇 convolution
  • 9 篇 computer vision
  • 8 篇 object detection
  • 7 篇 semantic segment...
  • 7 篇 deep learning
  • 7 篇 task analysis
  • 7 篇 cameras
  • 6 篇 face recognition
  • 6 篇 robots
  • 6 篇 computational mo...
  • 5 篇 image enhancemen...
  • 5 篇 generative adver...
  • 5 篇 three-dimensiona...
  • 5 篇 prototypes
  • 5 篇 anomaly detectio...
  • 5 篇 neural networks
  • 5 篇 robot sensing sy...

机构

  • 47 篇 shenzhen institu...
  • 43 篇 school of softwa...
  • 36 篇 college of compu...
  • 33 篇 institute of art...
  • 27 篇 school of softwa...
  • 20 篇 national enginee...
  • 18 篇 institute of art...
  • 18 篇 szu branch shenz...
  • 17 篇 guangdong key la...
  • 16 篇 computer vision ...
  • 11 篇 school of softwa...
  • 8 篇 institute of art...
  • 8 篇 computer vision ...
  • 7 篇 wormpex ai resea...
  • 7 篇 national key lab...
  • 7 篇 xi'an jiaotong u...
  • 7 篇 guangdong provin...
  • 6 篇 computer vision ...
  • 5 篇 guangdong key la...
  • 5 篇 school of softwa...

作者

  • 38 篇 shen linlin
  • 20 篇 shaoyi du
  • 15 篇 zhou jie
  • 15 篇 du shaoyi
  • 14 篇 yuehu liu
  • 14 篇 liu yuehu
  • 13 篇 gao can
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 11 篇 lai zhihui
  • 10 篇 tian zhiqiang
  • 10 篇 gao yue
  • 10 篇 zhiqiang tian
  • 9 篇 tan shunquan
  • 9 篇 wang fei
  • 8 篇 chi zhang
  • 8 篇 li yaochen
  • 8 篇 liu feng
  • 7 篇 huang jiwu
  • 7 篇 liu haozhe

语言

  • 336 篇 英文
  • 19 篇 其他
  • 4 篇 中文
检索条件"机构=Institute of Robotics and Software Engineering"
358 条 记 录,以下是201-210 订阅
排序:
Complementary Information Mutual Learning for Multimodality Medical Image Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Shen, Chuyun Li, Wenhao Chen, Haoqing Wang, Xiaoling Zhu, Fengping Li, Yuxin Wang, Xiangfeng Jin, Bo School of Computer Science and Technology East China Normal University Shanghai200062 China School of Data Science The Chinese University of Hong Kong Shenzhen Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518172 China Huashan Hospital Fudan University Shanghai200040 China School of Computer Science and Technology East China Normal University Shanghai AI Laboratory Shanghai200062 China School of Software Engineering Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai200092 China
Radiologists must utilize medical images of multiple modalities for tumor segmentation and diagnosis due to the limitations of medical imaging technology and the diversity of tumor signals. This has led to the develop... 详细信息
来源: 评论
A Uniform Representation Learning Method for OCT-based Fingerprint Presentation Attack Detection and Reconstruction
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Wentian Liu, Haozhe Liu, Feng Ramachandra, Raghavendra The College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Gjøvik2818 Norway
The technology of optical coherence tomography (OCT) to fingerprint imaging opens up a new research potential for fingerprint recognition owing to its ability to capture depth information of the skin layers. Developin... 详细信息
来源: 评论
A survey: Deep learning for hyperspectral image classification with few labeled samples
arXiv
收藏 引用
arXiv 2021年
作者: Jia, Sen Jiang, Shuguo Lin, Zhijie Li, Nanying Xu, Meng Yu, Shiqi College of Computer Science and Software Engineering Shenzhen University China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Department of Computer Science and Engineering Southern University of Science and Technology China
With the rapid development of deep learning technology and improvement in computing capability, deep learning has been widely used in the field of hyperspectral image (HSI) classification. In general, deep learning mo... 详细信息
来源: 评论
Unsupervised Multilayer Fuzzy Neural Networks for Image Clustering
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Yifan Ishibuchi, Hisao Er, Meng Joo Zhu, Jihua School of Software Engineering Xi’an Jiaotong University Xi’an710049 China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation China College of Marine Electrical Engineering Dalian Maritime University Dalian116026 China Institute of Artificial Intelligence Marine Robotics China
Nowadays, labeling a huge number of images is still a very challenging task. To tackle the problem of unlabeled data, unsupervised learning has been proposed. Among many unsupervised learning algorithms, K-means is th... 详细信息
来源: 评论
Semantically Aligned Task Decomposition in Multi-Agent Reinforcement Learning
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenhao Qiao, Dan Wang, Baoxiang Wang, Xiangfeng Jin, Bo Zha, Hongyuan School of Data Science The Chinese University of Hong Kong Shenzhen Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518172 China School of Data Science The Chinese University of Hong Kong Shenzhen Shenzhen518172 China School of Computer Science and Technology East China Normal University Shanghai200062 China School of Software Engineering Tongji University Shanghai200062 China
The difficulty of appropriately assigning credit is particularly heightened in cooperative MARL with sparse reward, due to the concurrent time and structural scales involved. Automatic subgoal generation (ASG) has rec... 详细信息
来源: 评论
Robust Self-Expression Learning with Adaptive Noise Perception
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Yangbo Zhou, Jie Lu, Jianglin Wan, Jun Gao, Can Lin, Qingshui College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China SMILE Lab Department of ECE College of Engineering Northeastern University Boston02115 United States School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan430073 China Basic Teaching Department Liaoning Technical University Huludao125105 China
Self-expression learning methods often obtain a coefficient matrix to measure the similarity between pairs of samples. However, directly using the raw data to represent each sample under the self-expression framework ... 详细信息
来源: 评论
Asymmetric Transfer Hashing with Adaptive Bipartite Graph Learning
arXiv
收藏 引用
arXiv 2022年
作者: Lu, Jianglin Zhou, Jie Chen, Yudong Pedrycz, Witold Hung, Kwok-Wai The College of Computer Science and Software Engineering Shenzhen University Guangdong Shenzhen518060 China Department of Electrical and Computer Engineering Northeastern University BostonMA02115 United States The College of Computer Science and Software Engineering Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The School of Information Technology and Electrical Engineering University of Queensland BrisbaneQLD4072 Australia The Department of Electrical & Computer Engineering University of Alberta Edmonton Canada The Systems Research Institute Polish Academy of Sciences Warsaw Poland Tencent Music Entertainment Guangdong Shenzhen518060 China
Thanks to the efficient retrieval speed and low storage consumption, learning to hash has been widely used in visual retrieval tasks. However, the known hashing methods assume that the query and retrieval samples lie ... 详细信息
来源: 评论
Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification
arXiv
收藏 引用
arXiv 2024年
作者: Peng, Ruimin Du, Zhenbang Zhao, Changming Luo, Jingwei Liu, Wenzhong Chen, Xinxing Wu, Dongrui Belt and Road Joint Laboratory on Measurement and Control Technology Huazhong University of Science and Technology Wuhan430074 China AI Platform Software Engineering Research Center Dongfeng Corporation Research & Development Institute Wuhan430072 China China Electronic System Technology Co. Ltd. Beijing100089 China Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities Southern University of Science and Technology Shenzhen518055 China
Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract laten... 详细信息
来源: 评论
Sample hardness based gradient loss for long-tailed cervical cell detection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Minmin Li, Xuechen Gao, Xiangbo Chen, Junliang Shen, Linlin Wu, Huisi Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China University of California Irvine United States
Due to the difficulty of cancer samples collection and annotation, cervical cancer datasets usually exhibit a long-tailed data distribution. When training a detector to detect the cancer cells in a WSI (Whole Slice Im... 详细信息
来源: 评论
Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation
arXiv
收藏 引用
arXiv 2024年
作者: Feng, Yifan Huang, Jiangang Du, Shaoyi Ying, Shihui Yong, Jun-Hai Li, Yipeng Ding, Guiguang Ji, Rongrong Gao, Yue School of Software BNRist THUIBCS BLBCI Tsinghua University Beijing100084 China Institute of Artificial Intelligence and Robotics College of Artificial Intelligence Xi’an Jiaotong University Xi’an710049 China The Department of Mathematics School of Science Shanghai University Shanghai200444 China The Department of Automation Tsinghua University Beijing100084 China The Media Analytics and Computing Laboratory Department of Artificial Intelligence School of Informatics Institute of Artificial Intelligence Fujian Engineering Research Center of Trusted Artificial Intelligence Analysis and Application Xiamen University 361005 China
We introduce Hyper-YOLO, a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features. Traditional YOLO models, while powerful, have limita... 详细信息
来源: 评论