咨询与建议

限定检索结果

文献类型

  • 108 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 136 篇 工学
    • 57 篇 信息与通信工程
    • 54 篇 计算机科学与技术...
    • 46 篇 软件工程
    • 43 篇 生物工程
    • 31 篇 电子科学与技术(可...
    • 26 篇 电气工程
    • 23 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 14 篇 控制科学与工程
    • 7 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 4 篇 交通运输工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 冶金工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
  • 77 篇 理学
    • 43 篇 生物学
    • 28 篇 物理学
    • 19 篇 数学
    • 15 篇 系统科学
    • 11 篇 统计学(可授理学、...
    • 3 篇 化学
  • 24 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 1 篇 法学

主题

  • 19 篇 magnetic resonan...
  • 15 篇 estimation
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 image segmentati...
  • 10 篇 three-dimensiona...
  • 10 篇 radar
  • 8 篇 deep neural netw...
  • 8 篇 signal processin...
  • 7 篇 task analysis
  • 7 篇 neural networks
  • 7 篇 magnetic resonan...
  • 6 篇 feature extracti...
  • 6 篇 machine learning
  • 6 篇 signal processin...
  • 6 篇 radar antennas
  • 5 篇 mimo radar
  • 5 篇 visualization
  • 5 篇 semantics
  • 5 篇 ofdm

机构

  • 72 篇 institute of sig...
  • 44 篇 institute of sig...
  • 21 篇 university of st...
  • 9 篇 university of tü...
  • 8 篇 bosch center for...
  • 5 篇 institute of sig...
  • 4 篇 robert bosch gmb...
  • 4 篇 king's college l...
  • 3 篇 institute of sig...
  • 3 篇 applied research...
  • 3 篇 institute for si...
  • 3 篇 fraunhofer insti...
  • 3 篇 signal and syste...
  • 3 篇 institute for si...
  • 3 篇 university of st...
  • 3 篇 department of ra...
  • 3 篇 gregorio marañón...
  • 3 篇 department of ra...
  • 3 篇 department of di...
  • 3 篇 digital signal p...

作者

  • 80 篇 bin yang
  • 77 篇 yang bin
  • 20 篇 abdulatif sherif
  • 18 篇 armanious karim
  • 14 篇 gatidis sergios
  • 14 篇 sergios gatidis
  • 10 篇 sherif abdulatif
  • 10 篇 liao yiwen
  • 9 篇 küstner thomas
  • 9 篇 thomas küstner
  • 8 篇 lukas mauch
  • 7 篇 eskandar george
  • 7 篇 bartler alexande...
  • 7 篇 annika liebgott
  • 6 篇 karim armanious
  • 6 篇 wiewel felix
  • 6 篇 guirguis karim
  • 6 篇 michael ulrich
  • 6 篇 konstantin nikol...
  • 6 篇 hepp tobias

语言

  • 176 篇 英文
  • 5 篇 其他
  • 2 篇 中文
检索条件"机构=Institute of Signal Processing and System Theory"
183 条 记 录,以下是11-20 订阅
排序:
AeGAN: Time-frequency speech denoising via generative adversarial networks  28
AeGAN: Time-frequency speech denoising via generative advers...
收藏 引用
28th European signal processing Conference, EUSIPCO 2020
作者: Abdulatif, Sherif Armanious, Karim Guirguis, Karim Sajeev, Jayasankar T. Yang, Bin University of Stuttgart Institute of Signal Processing and System Theory Stuttgart Germany
Automatic speech recognition (ASR) systems are of vital importance nowadays in commonplace tasks such as speech-to-text processing and language translation. This created the need for an ASR system that can operate in ... 详细信息
来源: 评论
Semi-supervised riemannian dimensionality reduction and classification using a manifold-based random walker graph  28
Semi-supervised riemannian dimensionality reduction and clas...
收藏 引用
28th European signal processing Conference, EUSIPCO 2020
作者: Fallah, Faezeh Wiewel, Felix Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Efficient classification of manifold-based data demands dimensionality reduction. However, the optimal lower dimension is mostly unknown. Also, supervised classification demands a collection of expert-annotated sample... 详细信息
来源: 评论
Grad-LAM: Visualization of deep neural networks for unsupervised learning  28
Grad-LAM: Visualization of deep neural networks for unsuperv...
收藏 引用
28th European signal processing Conference, EUSIPCO 2020
作者: Bartler, Alexander Hinderer, Darius Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Nowadays, the explainability of deep neural networks is an essential part of machine learning. In the last years, many methods were developed to visualize important regions of an input image for the decision of the de... 详细信息
来源: 评论
Entropy-based sample selection for online continual learning  28
Entropy-based sample selection for online continual learning
收藏 引用
28th European signal processing Conference, EUSIPCO 2020
作者: Wiewel, Felix Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Deep neural networks (DNNs) suffer from catastrophic forgetting, a rapid decrease in performance when trained on a sequence of tasks where only data of the most recent task is available. Most previous research has foc... 详细信息
来源: 评论
Indoor Positioning based on Active Radar Sensing and Passive Reflectors: Concepts & Initial Results  13
Indoor Positioning based on Active Radar Sensing and Passive...
收藏 引用
13th International Conference on Indoor Positioning and Indoor Navigation - Work-in-Progress Papers, IPIN-WiP 2023
作者: Schlachter, Pascal Yu, Zhibin Iqbal, Naveed Wu, Xiaofeng Hinderer, Sven Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Pfaffenwaldring 47 Stuttgart70569 Germany Munich Research Center Huawei Technologies Duesseldorf GmbH Riesstraße 25 Munich80992 Germany
To navigate reliably in indoor environments, an industrial autonomous vehicle must know its position. However, current indoor vehicle positioning technologies either lack accuracy, usability or are too expensive. Thus... 详细信息
来源: 评论
Exploring Domain Shift on Radar-Based 3D Object Detection Amidst Diverse Environmental Conditions
Exploring Domain Shift on Radar-Based 3D Object Detection Am...
收藏 引用
International Conference on Intelligent Transportation
作者: Miao Zhang Sherif Abdulatif Benedikt Loesch Marco Altmann Marius Schwarz Bin Yang Robert Bosch GmbH Corporate Research Germany University of Stuttgart Institute of Signal Processing and System Theory Germany
The rapid evolution of deep learning and its integration with autonomous driving systems have led to substantial advancements in 3D perception using multimodal sensors. Notably, radar sensors show greater robustness c... 详细信息
来源: 评论
Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds?
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Miao Abdulatif, Sherif Loesch, Benedikt Altmann, Marco Yang, Bin Robert Bosch GmbH Corporate Research 71272 Germany University of Stuttgart Institute of Signal Processing and System Theory 70569 Germany
Due to the significant effort required for data collection and annotation in 3D perception tasks, mixed sample data augmentation (MSDA) has been widely studied to generate diverse training samples by mixing existing d... 详细信息
来源: 评论
Hierarchical Quadratic Random Forest Classifier
arXiv
收藏 引用
arXiv 2023年
作者: Fallah, Faezeh Institute of Signal Processing and System Theory University of Stuttgart Pfaffenwaldring 47 Stuttgart70569 Germany
In this paper, we proposed a hierarchical quadratic random forest classifier for classifying multiresolution samples extracted from multichannel data. This forest incorporated a penalized multivariate linear discrimin... 详细信息
来源: 评论
Active Inference-Based Optimization of Discriminative Neural Network Classifiers
arXiv
收藏 引用
arXiv 2023年
作者: Fallah, Faezeh Institute of Signal Processing and System Theory University of Stuttgart Pfaffenwaldring 47 Stuttgart70569 Germany
Commonly used objective functions (losses) for a supervised optimization of discriminative neural network classifiers were either distribution-based or metric-based. The distribution-based losses were mostly based on ... 详细信息
来源: 评论
Hierarchical Multiresolution Feature- and Prior-based Graphs for Classification
arXiv
收藏 引用
arXiv 2023年
作者: Fallah, Faezeh Institute of Signal Processing and System Theory University of Stuttgart Pfaffenwaldring 47 Stuttgart70569 Germany
To incorporate spatial (neighborhood) and bidirectional hierarchical relationships as well as features and priors of the samples into their classification, we formulated the classification problem on three variants of... 详细信息
来源: 评论