作者:
Y. WakasaY. YamamotoDept. of Applied Analysis and Complex Dynamical Systems
Graduate School of Informatics Kyoto University Kyoto Japan. Yuji Wakasa was born in Okayama
Japan in 1968. He received the B.S. and M.S. degrees in engineering from Kyoto university Japan in 1992 and 1994 respectively. From 1994 to 1998 he was a Research Associate in the Department of Information Technology Okayama University. Since April 1998 he has been a Research Associate in the Graduate School of Informatics Kyoto University. His current research interests include robust control and control system design via mathematical programming. Yutaka Yamamoto received his B.S. and M.S. degrees in engineering from Kyoto University
Kyoto Japan in 1972 and 1974 respectively and the M.S. and Ph.D. degree in mathematics from the University of Florida in 1976 and 1978 respectively. From 1978 to 1987 he was with Department of Applied Mathematics and Physics Kyoto University and from 1987 to 1997 with Department of Applied System Science. Since 1998 he is a professor at the current position. His current research interests include realization and robust control of distributed parameter systems learning control sampled-data systems and digital signal processing. Dr. Yamamoto is a receipient of the Sawaragi memorial paper award (1985) the Outstanding Paper Award of SICE (1987) Best Author Award of SICE (1990) the George Axelby Outstanding Paper Award of IEEE CSS in 1996 Takeda Paper Prize of SICE in 1997. He is a Fellow of IEEE. He was an associate editor of Automatica. He is currently an associate editor of IEEE Transactions on Automatic Control Systems and Control Letters and Mathematics of Control Signals and Systems. He is a member of the IEEE the Society of Instrument and Control Engineers (SICE) and the Institute of Systems Control and Information Engineers.
This paper presents a design method of control systems such that a designer can flexibly take account of tradeoffs between evaluated uncertainty ranges and the level of control performance. The problem is reduced to a...
详细信息
This paper presents a design method of control systems such that a designer can flexibly take account of tradeoffs between evaluated uncertainty ranges and the level of control performance. The problem is reduced to a BMI problem and approximately solved by LMIs. The convergence of the proposed approximation is proved in a modified sense. A numerical example shows the effectiveness of the proposed method in comparison with the standard robust control.
暂无评论