The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to i...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber ***, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
Security and secure routing are important design issues in the design of Wireless Sensor Networks (WSNs). Intrusion Detection systems (IDSs) are useful for securing the communication in WSNs. An IDS can be developed b...
详细信息
The rapid growth of mobile applications has led to serious security challenges, resulting in vulnerabilities. Automation in security testing methods is becoming popular, with the Automated Vulnerability Detection meth...
详细信息
Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of rout...
详细信息
Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of router nodes within WSNs is a fundamental challenge that significantly impacts network performance and reliability. Researchers have explored various approaches using metaheuristic algorithms to address these challenges and optimize WSN performance. This paper introduces a new hybrid algorithm, CFL-PSO, based on combining an enhanced Fick’s Law algorithm with comprehensive learning and Particle Swarm Optimization (PSO). CFL-PSO exploits the strengths of these techniques to strike a balance between network connectivity and coverage, ultimately enhancing the overall performance of WSNs. We evaluate the performance of CFL-PSO by benchmarking it against nine established algorithms, including the conventional Fick’s law algorithm (FLA), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO), Salp Swarm Optimization (SSO), War Strategy Optimization (WSO), Harris Hawk Optimization (HHO), African Vultures Optimization Algorithm (AVOA), Capuchin Search Algorithm (CapSA), Tunicate Swarm Algorithm (TSA), and PSO. The algorithm’s performance is extensively evaluated using 23 benchmark functions to assess its effectiveness in handling various optimization scenarios. Additionally, its performance on WSN router node placement is compared against the other methods, demonstrating its competitiveness in achieving optimal solutions. These analyses reveal that CFL-PSO outperforms the other algorithms in terms of network connectivity, client coverage, and convergence speed. To further validate CFL-PSO’s effectiveness, experimental studies were conducted using different numbers of clients, routers, deployment areas, and transmission ranges. The findings affirm the effectiveness of CFL-PSO as it consistently delivers favorable optimization results when compared to existing meth
With the ever-rising risk of phishing attacks, which capitalize on vulnerable human behavior in the contemporary digital space, requires new cybersecurity methods. This literary work contributes to the solution by nov...
详细信息
Forest fires pose significant threats to both the environment and human life, necessitating the development of advanced detection and prevention systems. In this study, we propose an integrated IoT (Internet of Things...
详细信息
The innovative system outlined in the provided research demonstrates a significant stride towards addressing the growing concern of road safety. Lane departure and driver drowsiness are two major causes of road accide...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
Agricultural industry has grown significantly bring sustainable farming practices in improving the food quality, enhancing agricultural productivity and global food security. However, the crop yield and its quality ar...
详细信息
Diabetes mellitus when untreated can result in a number of health issues. It is a metabolic disease marked by abnormal blood glucose levels. Early detection of diabetes improves a person's long-term health by halt...
详细信息
暂无评论