This paper proposes using star-delta and star-series connection modes in three-phase dual-winding squirrelcage induction motors to have available 100% and 55% of the original rated power for a given supply line-to-lin...
详细信息
In network slicing, the network operator needs to satisfy the service level agreements of multiple slices at the same time and on the same physical infrastructure. To do so with reduced provisioned resources, the oper...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
Amidst rising distributed generation and its potential role in grid management, this article presents a new realistic approach to determine the operational space and flexibility potential of an unbalanced active distr...
详细信息
Federated Learning (FL), an emerging distributed Artificial Intelligence (AI) technique, is susceptible to jamming attacks during the wireless transmission of trained models. In this letter, we introduce a jamming att...
详细信息
This article introduces a novel mechatronic system for coupling the stems of seedlings and plants to wooden stakes or ropes, a crucial process for supporting them during growth, transportation, and fruiting in plant p...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
In this paper, we propose a sub-optimal approach for the multi-agent navigation problem in simply-connected workspaces. We design a decentralized control law exhibiting the following three properties: (1) navigation o...
详细信息
The increasing frequency of natural disasters has led to situations where small towns and critical infrastructure, become isolated from the main utility grid. The microgrids' ability to work autonomously from the ...
详细信息
This paper presents a review on methods for class-imbalanced learning with the Support Vector Machine (SVM) and its variants. We first explain the structure of SVM and its variants and discuss their inefficiency in le...
详细信息
暂无评论