This paper presents a new approach for vision-based autonomous road following. By building on a recently developed optical-flow-based theory, we suggest that motion commands can be generated directly from a visual fea...
详细信息
An approach for tracing, representation, and recognition of a handwritten numeral in an offline environment is presented. A 2D spatial representation of a numeral is first transformed into a 3D spatiotemporal represen...
详细信息
An approach for tracing, representation, and recognition of a handwritten numeral in an offline environment is presented. A 2D spatial representation of a numeral is first transformed into a 3D spatiotemporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. Given the dynamic information of the tracing sequence, a multiresolution critical-point segmentation method is proposed to extract local feature points, at varying degrees of scale and coarseness. A neural network architecture, the hierarchically self-organizing learning (HSOL) network (S. Lee, J.C. Pan, 1989), especially for handwritten numeral recognition, is presented. Experimental results based on a bidirectional HSOL network indicated that the method is robust in terms of variations, deformations, and corruption, achieving about 99% recognition rate for the test patterns.< >
作者:
S.S. KrishnanA.C. SandersonElectrical
Computer and Systems Engineering Department Center for Advanced Technology in Automation and Robotics Rensselaer Polytechnic Institute Troy NY USA
The feasible path problem is solved for planning a collision-free path to translate an arbitrary polyhedral robot from an initial position to some goal position in a polyhedral environment. The shortest path problem e...
详细信息
The feasible path problem is solved for planning a collision-free path to translate an arbitrary polyhedral robot from an initial position to some goal position in a polyhedral environment. The shortest path problem entails finding the shortest feasible path. The authors present two versions of the window corner (WC) algorithm, which is a novel solution to the problems for the case of single and multistep translational paths for two dimensions, and then summarize the extension to the three-dimensional WC algorithm, for feasible paths. The concept of window corners in the polyhedral cone representation (PCR) is introduced, which reduces the search space. The PCR cones store constraints between boundary elements. The PCO representation has O(m) vertices compared to O(m/sup 2/) in a C-space representation. The WC algorithm was tested and an example from assembly path planning is presented.< >
Fast procedures for computing fuzzy proximity measures between a multifingered robot hand and an object to be grasped are presented. T.N. Nguyen and H.E. Stephanou (1990) presented a fuzzy approach for prehension, ide...
详细信息
Fast procedures for computing fuzzy proximity measures between a multifingered robot hand and an object to be grasped are presented. T.N. Nguyen and H.E. Stephanou (1990) presented a fuzzy approach for prehension, identified sources of fuzziness, and proposed a fuzzy algorithm for multifingered prehension. These ideas are extended by assuming fuzziness in the object location and geometric hand configuration, computing information on proximity of the hand and object, analyzing the computational efficiencies, and indicating how geometric information can be used in the process of prehension. The implementation details are outlined. The computation is useful in grasp planning and in analyzing the local behavior of the robot hand in the vicinity of the object.< >
A system for exhaustively inspecting a workpiece, not merely certain features, is presented. The system is based on comparing a volumetric representation of a reference object to a volumetric representation of an actu...
详细信息
A system for exhaustively inspecting a workpiece, not merely certain features, is presented. The system is based on comparing a volumetric representation of a reference object to a volumetric representation of an actual object iteratively created from sensor data. The use of volumetric representations gives this approach a number of distinct advantages over the more traditional boundary-based inspection methods. The method is capable of handling arbitrarily complex geometries and does not rely on the identification of features. It lends itself naturally to a multisensor environment, and facilitates true 3-D inspection as opposed to methods that require dimensional reductions of data by projection onto a 2-D plane. The authors focus on an important aspect of volumetric inspection which is the automatic generation of a sequence of sensor operations that will acquire the complete geometry of the object being inspected.< >
The kinematic path planning problem of a nonholonomic system can be posed as a point-to-point control problem of a nonlinear system. This system has the property that it is not locally stabilizable but is globally con...
详细信息
The kinematic path planning problem of a nonholonomic system can be posed as a point-to-point control problem of a nonlinear system. This system has the property that it is not locally stabilizable but is globally controllable. In this paper, we present a new algorithm for constructing a feasible path between specified initial and final configurations. Polyhedral constraints in both configuration and non-configuration spaces (possibly non-convex) can also be incorporated in this framework. The algorithm is based on the assumption that the system is usually controllable about a non-trivial trajectory, which is true for many cases. An initial trajectory is iteratively warped until the desired final configuration is reached. Examples of a front-wheel driven car, and tractors with one, two, and three trailers are included to illustrate the efficacy of the proposed algorithm.
K.Y. Goldberg (1990) described an algorithm for orienting planar polygonal parts using a modified parallel-jaw gripper. The authors extend this algorithm to handle parts with curved edges. They define a generalized po...
详细信息
K.Y. Goldberg (1990) described an algorithm for orienting planar polygonal parts using a modified parallel-jaw gripper. The authors extend this algorithm to handle parts with curved edges. They define a generalized polygon as a planar figure made up of piecewise linear and circular edges, and a generalized polygonal part as one of constant cross section, the convex hull of which is a generalized polygon. For this class of parts a complete algorithm for determining an optimal parts-orienting strategy is presented.< >
暂无评论