The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized ***,how to protect the p...
详细信息
The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized ***,how to protect the private information of users in federated learning has become an important research *** with the differential privacy(DP)technique and secure multiparty computation(SMC)strategy,the covert communication mechanism in federated learning is more efficient and energy-saving in training the ma-chine learning *** this paper,we study the covert communication problem for federated learning in crowd sensing Internet-of-Things *** from the previous works about covert communication in federated learning,most of which are considered in a centralized framework and experimental-based,we firstly proposes a centralized covert communication mechanism for federated learning among n learning agents,the time complexity of which is O(log n),approximating to the optimal ***,for the federated learning without parameter server,which is a harder case,we show that solving such a problem is NP-hard and prove the existence of a distributed covert communication mechanism with O(log logΔlog n)times,approximating to the optimal solution.Δis the maximum distance between any pair of learning *** analysis and nu-merical simulations are presented to show the performance of our covert communication *** hope that our covert communication work can shed some light on how to protect the privacy of federated learning in crowd sensing from the view of communications.
Images are used widely nowadays. Images are used in many fields such as medicine to terrain mapping. There is a need to compress the images and represent them in shorter form for effective transmission. Several techni...
详细信息
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow...
详细信息
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow uncontrollably, forming a tumor on the skin. To prevent skin cancer from spreading and potentially leading to serious complications, it's critical to identify and treat it as early as possible. An innovative two-fold deep learning based skin cancer detection model is presented in this research work. Five main stages make up the proposed model: Preprocessing, segmentation, feature extraction, feature selection, and skin cancer detection. Initially, the Min–max contrast stretching and median filtering used to pre-process the collected raw image. From the pre-processed image, the Region of Intertest (ROI) is identified via optimized mask Region-based Convolutional Neural Network (R-CNN). Then, from the identified ROI areas, the texture features like Illumination-invariant Binary Gabor Pattern (II-BGP), Local Binary Pattern (LBP), Gray-Level Co-occurrence Matrix (GLCM), Color feature such as Color Correlogram and Histogram Intersection, and Shape feature including Moments, Area, Perimeter, Eccentricity, Average bending energy are extracted. To choose the optimal features from the extracted ones, the Golden Eagle Mutated Leader Optimization (GEMLO) is used. The proposed Golden Eagle Mutated Leader Optimization (GEMLO) is the conceptual amalgamation of the standard Mutated Leader Algorithm (MLA) and Golden Eagle Optimizer are used to select best features (GEO). The skin cancer detection is accomplished via two-fold-deep-learning-classifiers, that includes the Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The final outcome is the combination of the outcomes acquired from Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The PYTHON platform is being used to implement the suggested model. Using the curre
Emotions have a significant impact on how people make decisions. Due to its potential applications in various fields, emotion intensity detection has attracted a lot of attention recently. Several methods have been pr...
详细信息
In the field of computer-aided drug discovery, identifying promising drug candidates from small molecule libraries requires meaningful molecular embeddings for downstream tasks, such as property prediction. However, o...
详细信息
Suicide represents a poignant societal issue deeply entwined with mental well-being. While existing research primarily focuses on identifying suicide-related texts, there is a gap in the advanced detection of mental h...
详细信息
Medical imaging, a cornerstone of disease diagnosis and treatment planning, faces the hurdles of subjective interpretation and reliance on specialized expertise. Deep learning algorithms show improvements in automatin...
详细信息
Medical Image Analysis (MIA) is integral to healthcare, demanding advanced computational techniques for precise diagnostics and treatment planning. The demand for accurate and interpretable models is imperative in the...
详细信息
Medical Image Analysis (MIA) is integral to healthcare, demanding advanced computational techniques for precise diagnostics and treatment planning. The demand for accurate and interpretable models is imperative in the ever-evolving healthcare landscape. This paper explores the potential of Self-Supervised Learning (SSL), transfer learning and domain adaptation methods in MIA. The study comprehensively reviews SSL-based computational techniques in the context of medical imaging, highlighting their merits and limitations. In an empirical investigation, this study examines the lack of interpretable and explainable component selection in existing SSL approaches for MIA. Unlike prior studies that randomly select SSL components based on their performance on natural images, this paper focuses on identifying components based on the quality of learned representations through various clustering evaluation metrics. Various SSL techniques and backbone combinations were rigorously assessed on diverse medical image datasets. The results of this experiment provided insights into the performance and behavior of SSL methods, paving the way for an explainable and interpretable component selection mechanism for artificial intelligence models in medical imaging. The empirical study reveals the superior performance of BYOL (Bootstrap Your Own Latent) with resnet as the backbone, as indicated by various clustering evaluation metrics such as Silhouette Coefficient (0.6), Davies-Bouldin Index (0.67), and Calinski-Harabasz Index (36.9). The study also emphasizes the benefits of transferring weights from a model trained on a similar dataset instead of a dataset from a different domain. Results indicate that the proposed mechanism expedited convergence, achieving 98.66% training accuracy and 92.48% testing accuracy in 23 epochs, requiring almost half the number of epochs for similar results with ImageNet weights. This research contributes to advancing the understanding of SSL in MIA, providin
Parkinson's disease (PD) diagnosis involves the assessment of a variety of motor and non-motor symptoms. To accurately diagnose PD, it is necessary to differentiate its symptoms from those of other conditions. Dur...
详细信息
The cellular automaton (CA), a discrete model, is gaining popularity in simulations and scientific exploration across various domains, including cryptography, error-correcting codes, VLSI design and test pattern gener...
详细信息
暂无评论