咨询与建议

限定检索结果

文献类型

  • 2,474 篇 会议
  • 1,507 篇 期刊文献
  • 12 册 图书

馆藏范围

  • 3,993 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,400 篇 工学
    • 1,436 篇 计算机科学与技术...
    • 1,282 篇 软件工程
    • 742 篇 控制科学与工程
    • 437 篇 信息与通信工程
    • 342 篇 生物工程
    • 339 篇 机械工程
    • 260 篇 光学工程
    • 209 篇 电气工程
    • 202 篇 生物医学工程(可授...
    • 181 篇 交通运输工程
    • 146 篇 仪器科学与技术
    • 141 篇 电子科学与技术(可...
    • 124 篇 化学工程与技术
    • 94 篇 土木工程
    • 87 篇 建筑学
    • 80 篇 动力工程及工程热...
    • 75 篇 力学(可授工学、理...
    • 70 篇 安全科学与工程
  • 1,200 篇 理学
    • 572 篇 数学
    • 358 篇 生物学
    • 347 篇 物理学
    • 205 篇 统计学(可授理学、...
    • 140 篇 系统科学
    • 116 篇 化学
  • 496 篇 管理学
    • 323 篇 管理科学与工程(可...
    • 196 篇 图书情报与档案管...
    • 137 篇 工商管理
  • 142 篇 医学
    • 135 篇 临床医学
    • 100 篇 基础医学(可授医学...
  • 88 篇 法学
    • 85 篇 社会学
  • 53 篇 经济学
  • 29 篇 教育学
  • 25 篇 农学
  • 8 篇 文学
  • 8 篇 艺术学
  • 4 篇 军事学
  • 2 篇 历史学
  • 1 篇 哲学

主题

  • 135 篇 feature extracti...
  • 130 篇 training
  • 102 篇 robots
  • 97 篇 intelligent robo...
  • 96 篇 artificial intel...
  • 89 篇 object detection
  • 88 篇 accuracy
  • 84 篇 semantics
  • 81 篇 three-dimensiona...
  • 80 篇 reinforcement le...
  • 72 篇 cameras
  • 72 篇 robot sensing sy...
  • 70 篇 computer vision
  • 70 篇 robustness
  • 69 篇 computational mo...
  • 65 篇 real-time system...
  • 64 篇 convolution
  • 59 篇 deep learning
  • 59 篇 visualization
  • 58 篇 trajectory

机构

  • 406 篇 institute of art...
  • 343 篇 shenzhen institu...
  • 158 篇 institute of art...
  • 137 篇 school of artifi...
  • 118 篇 school of scienc...
  • 82 篇 university of ch...
  • 79 篇 institute of art...
  • 70 篇 institute of aut...
  • 68 篇 the chinese univ...
  • 63 篇 siat branch shen...
  • 60 篇 state key labora...
  • 59 篇 centre for artif...
  • 49 篇 shenzhen institu...
  • 47 篇 the shenzhen ins...
  • 44 篇 tianjin key labo...
  • 42 篇 school of softwa...
  • 42 篇 national key lab...
  • 40 篇 institute of rob...
  • 39 篇 institute of art...
  • 38 篇 lamarr institute...

作者

  • 254 篇 nanning zheng
  • 213 篇 zheng nanning
  • 76 篇 chen badong
  • 69 篇 jingmin xin
  • 55 篇 badong chen
  • 53 篇 al-turjman fadi
  • 51 篇 jianru xue
  • 50 篇 huang jianwei
  • 50 篇 zhang zhaoxiang
  • 49 篇 shaoyi du
  • 48 篇 zhou sanping
  • 47 篇 yuehu liu
  • 46 篇 shen linlin
  • 45 篇 liu yuehu
  • 44 篇 lei zhen
  • 41 篇 xin jingmin
  • 37 篇 lan xuguang
  • 37 篇 wang le
  • 37 篇 shitao chen
  • 36 篇 fang yongchun

语言

  • 3,283 篇 英文
  • 663 篇 其他
  • 52 篇 中文
  • 1 篇 朝鲜文
检索条件"机构=Institute of artificial intelligence and robotics"
3993 条 记 录,以下是931-940 订阅
排序:
AI-based Framework for Robust Model-Based Connector Mating in Robotic Wire Harness Installation
arXiv
收藏 引用
arXiv 2025年
作者: Kienle, Claudius Alt, Benjamin Schneider, Finn Pertlwieser, Tobias Jäkel, Rainer Rayyes, Rania ArtiMinds Robotics Karlsruhe Germany IAS Lab Computer Science Department TU Darmstadt Germany AICOR Institute for Artificial Intelligence University of Bremen Germany Karlsruhe Germany
Despite the widespread adoption of industrial robots in automotive assembly, wire harness installation remains a largely manual process, as it requires precise and flexible manipulation. To address this challenge, we ... 详细信息
来源: 评论
A Review on On Device Privacy and Machine Learning Training  2
A Review on On Device Privacy and Machine Learning Training
收藏 引用
2nd IEEE International Conference on artificial intelligence in Everything, AIE 2022
作者: Tonga, Paul Audu Ameen, Zubaida Said Mubarak, Auwalu Saleh Al-Turjman, Fadi Ai and Robotics Institute Near East University Research Center for Ai and IoT Artificial Intelligence Dept Turkey University of Kyrenia Research Center for Ai and IoT Faculty of Engineering Kyrenia Cyprus
On device machine learning has in recent times attracted growing attention and applications, ranging from advanced OCR and handwriting recognition, smart sleep tracking in Apple iOS, mobile virtual assistants and Imag... 详细信息
来源: 评论
Skeleton-Based Human Action Recognition with Noisy Labels
Skeleton-Based Human Action Recognition with Noisy Labels
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yi Xu Kunyu Peng Di Wen Ruiping Liu Junwei Zheng Yufan Chen Jiaming Zhang Alina Roitberg Kailun Yang Rainer Stiefelhagen Anthropomatics and Robotics Karlsruhe Institute of Technology Germany Institute for Artificial Intelligence University of Stuttgart Germany School of Robotics Hunan University China National Engineering Research Center of Robot Visual Perception and Control Technology Hunan University China
Understanding human actions from body poses is critical for assistive robots sharing space with humans in order to make informed and safe decisions about the next interaction. However, precise temporal localization an... 详细信息
来源: 评论
Optimizing Medication Compliance through Machine Learning and IoT for Personalized Health Management  9
Optimizing Medication Compliance through Machine Learning an...
收藏 引用
9th International Conference on Communication and Electronics Systems, ICCES 2024
作者: Balaji, P. Mohitha, I.K. Prashanthini, K. Sivaprakash, K. Rithick, P. Kasthuri, S. Sri Ramakrishna Engineering College Department of Electronics and Instrumentation Engineering Coimbatore India KGiSL Institute of Technology Department of Electronics and Communication Engineering Coimbatore India Sri Ramakrishna Engineering College Department of Robotics and Automation Engineering Coimbatore India Sns College of Engineering Department of Artificial Intelligence and Data Science Coimbatore India
Machine learning (ML) and Internet of Things (IoT) technologies have revolutionized the healthcare industry, particularly in the field of medication administration. Inadequate adherence to medication is a serious worl... 详细信息
来源: 评论
On the O(√d/T1/4) Convergence Rate of RMSProp and Its Momentum Extension Measured by 1 Norm
arXiv
收藏 引用
arXiv 2024年
作者: Li, Huan Lin, Zhouchen Institute of Robotics and Automatic Information Systems College of Artificial Intelligence Nankai University Tianjin China National Key Lab of General AI School of Intelligence Science and Technology Peking University Beijing China
Although adaptive gradient methods have been extensively used in deep learning, their convergence rates proved in the literature are all slower than that of SGD, particularly with respect to their dependence on the di... 详细信息
来源: 评论
Optimal scheduling of islanded microgrid based on improved MOSSA  43
Optimal scheduling of islanded microgrid based on improved M...
收藏 引用
43rd Chinese Control Conference, CCC 2024
作者: Huanhuan, Lai Qingqi, Pei Meiqin, Liu Shanling, Dong Zhiyun, Xie Jian, Zheng Hezuo, Qu Senlin, Zhang Wenzhou Branch of State Grid Wenzhou325028 China Zhejiang University College of Electrical Engineering Hangzhou310027 China Zhejiang University State Key Laboratory of Industrial Control Technology Hangzhou310027 China Xi'an Jiaotong University Institute of Artificial Intelligence and Robotics Xi'an710049 China Jinhua Research Institute of Zhejiang University Jinhua321036 China
Microgrid systems are widely used in various scenarios. However, there is great uncertainty in the output of wind and solar units. How to maximize both the economic and environmental benefits of microgrid is an import... 详细信息
来源: 评论
OpenSatMap: a fine-grained high-resolution satellite dataset for large-scale map construction  24
OpenSatMap: a fine-grained high-resolution satellite dataset...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Hongbo Zhao Lue Fan Yuntao Chen Haochen Wang Yuran Yang Xiaojuan Jin Yixin Zhang Gaofeng Meng Zhaoxiang Zhang Institute of Automation Chinese Academy of Sciences (CASIA) and University of Chinese Academy of Sciences (UCAS) Centre for Artificial Intelligence and Robotics HKISI CAS Tencent Maps Tencent and Beijing University of Posts and Telecommunications Institute of Automation Chinese Academy of Sciences (CASIA) Tencent Maps Tencent Institute of Automation Chinese Academy of Sciences (CASIA) and Centre for Artificial Intelligence and Robotics HKISI CAS and University of Chinese Academy of Sciences (UCAS)
In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation a...
来源: 评论
A Novel Dense Object Detector with Scale Balanced Sample Assignment and Refinement
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Dong, Jinpeng Yao, Dingyi Hu, Yufeng Zhou, Sanping Zheng, Nanning Xi’an Jiaotong University National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an710049 China Xi’an Jiaotong University Shaanxi Xi’an710049 China
Scale variation of objects remains one of the crucial challenges in object detection. Currently, conventional dense detectors with fixed receptive fields and label weights are not conducive to the detection of multi-s... 详细信息
来源: 评论
CaKDP: Category-Aware Knowledge Distillation and Pruning Framework for Lightweight 3D Object Detection
CaKDP: Category-Aware Knowledge Distillation and Pruning Fra...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Haonan Zhang Longjun Liu Yuqi Huang Zhao Yang Xinyu Lei Bihan Wen National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications and Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Nanyang Technological University
Knowledge distillation (KD) possesses immense potential to accelerate the deep neural networks (DNNs) for LiDAR-based 3D detection. However, in most of prevailing approaches, the suboptimal teacher models and insuffic... 详细信息
来源: 评论
Robust Noisy Label Learning via Two-Stream Sample Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Bai, Sihan Zhou, Sanping Qin, Zheng Wang, Le Zheng, Nanning The National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Shaanxi 710049 China
Noisy label learning aims to learn robust networks under the supervision of noisy labels, which plays a critical role in deep learning. Existing work either conducts s ample selection or label correction to deal with ... 详细信息
来源: 评论