咨询与建议

限定检索结果

文献类型

  • 66 篇 会议
  • 33 篇 期刊文献

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 53 篇 计算机科学与技术...
    • 36 篇 软件工程
    • 14 篇 生物工程
    • 9 篇 信息与通信工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 4 篇 控制科学与工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 光学工程
    • 3 篇 电气工程
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 1 篇 仪器科学与技术
  • 51 篇 理学
    • 36 篇 数学
    • 16 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 物理学
    • 5 篇 化学
    • 3 篇 系统科学
    • 2 篇 地球物理学
  • 21 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 5 篇 社会学
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 2 篇 农学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 7 篇 parallel process...
  • 6 篇 libraries
  • 6 篇 bandwidth
  • 6 篇 optimization
  • 6 篇 kernel
  • 5 篇 conferences
  • 5 篇 sparse matrices
  • 5 篇 computational mo...
  • 5 篇 coprocessors
  • 5 篇 instruction sets
  • 4 篇 runtime
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 distributed proc...
  • 4 篇 hardware
  • 4 篇 synchronization
  • 4 篇 data models
  • 3 篇 deep learning
  • 3 篇 convolution
  • 3 篇 vectors

机构

  • 12 篇 parallel computi...
  • 11 篇 parallel computi...
  • 7 篇 parallel computi...
  • 6 篇 parallel computi...
  • 3 篇 parallel computi...
  • 3 篇 parallel computi...
  • 2 篇 software enginee...
  • 2 篇 university of mi...
  • 2 篇 parallel computi...
  • 2 篇 parallel computi...
  • 2 篇 lawrence berkele...
  • 2 篇 ibm thomas j. wa...
  • 2 篇 school of comput...
  • 2 篇 riken center for...
  • 2 篇 department of co...
  • 2 篇 national energy ...
  • 2 篇 parallel computi...
  • 2 篇 center for space...
  • 2 篇 parallel computi...
  • 2 篇 princeton neuros...

作者

  • 14 篇 dubey pradeep
  • 10 篇 kaul bharat
  • 9 篇 mudigere dheevat...
  • 9 篇 satish nadathur
  • 9 篇 das dipankar
  • 7 篇 sundaram narayan...
  • 7 篇 avancha sasikant...
  • 6 篇 kundu abhisek
  • 6 篇 timothy g. matts...
  • 6 篇 banerjee kunal
  • 6 篇 mikhail smelyans...
  • 6 篇 mellempudi navee...
  • 6 篇 pradeep dubey
  • 5 篇 jeff r. hammond
  • 5 篇 bharat kaul
  • 5 篇 cohen jonathan d...
  • 5 篇 sanchit misra
  • 5 篇 jongsoo park
  • 5 篇 hammond jeff r.
  • 4 篇 chhugani jatin

语言

  • 98 篇 英文
  • 1 篇 其他
检索条件"机构=Intel Parallel Computing Lab"
99 条 记 录,以下是41-50 订阅
排序:
Ternary neural networks with fine-grained quantization
arXiv
收藏 引用
arXiv 2017年
作者: Mellempudi, Naveen Kundu, Abhisek Mudigere, Dheevatsa Das, Dipankar Kaul, Bharat Dubey, Pradeep Parallel Computing Lab Intel Labs Bangalore Parallel Computing Lab Intel Labs Santa ClaraCA
We propose a novel fine-grained quantization (FGQ) method to ternarize pre-trained full precision models, while also constraining activations to 8 and 4-bits. Using this method, we demonstrate minimal loss in classifi... 详细信息
来源: 评论
Two-step approach to scheduling quantum circuits
arXiv
收藏 引用
arXiv 2017年
作者: Guerreschi, Gian Giacomo Park, Jongsoo Parallel Computing Lab Intel Corporation
As the effort to scale up existing quantum hardware proceeds, it becomes necessary to schedule quantum gates in a way that minimizes the number of operations. There are three constraints that have to be satisfied: the... 详细信息
来源: 评论
Bridging the gap between HPC and big data frameworks  43rd
Bridging the gap between HPC and big data frameworks
收藏 引用
43rd International Conference on Very Large Data Bases, VLDB 2017
作者: Anderson, Michael Smith, Shaden Sundaram, Narayanan Capotă, Mihai Zhao, Zheguang Dulloor, Subramanya Satish, Nadathur Willke, Theodore L. Parallel Computing Lab United States University of Minnesota United States Brown University United States Infrastructure Research Lab Intel Corporation United States
Apache Spark is a popular framework for data analytics with attractive features such as fault tolerance and interoperability with the Hadoop ecosystem. Unfortunately, many analytics operations in Spark are an order of... 详细信息
来源: 评论
Mixed low-precision deep learning inference using dynamic fixed point
arXiv
收藏 引用
arXiv 2017年
作者: Mellempudi, Naveen Kundu, Abhisek Das, Dipankar Mudigere, Dheevatsa Kaul, Bharat Parallel Computing Lab Intel Labs Bangalore India
We propose a cluster-based quantization method to convert pre-trained full precision weights into ternary weights with minimal impact on the accuracy. In addition we also constrain the activations to 8-bits thus enabl... 详细信息
来源: 评论
Cataloging the visible universe through bayesian inference at petascale
arXiv
收藏 引用
arXiv 2018年
作者: Regier, Jeffrey Pamnany, Kiran Fischer, Keno Noack, Andreas Lam, Maximilian Revels, Jarrett Howard, Steve Giordano, Ryan Schlegel, David McAuliffe, Jon Thomas, Rollin Prabhat Department of Electrical Engineering and Computer Sciences University of California Berkeley United States Parallel Computing Lab Intel Corporation Julia Computing Computer Science and AI Laboratories Massachusetts Institute of Technology Department of Statistics University of California Berkeley United States Lawrence Berkeley National Laboratory
Astronomical catalogs derived from wide-field imaging surveys are an important tool for understanding the Universe. We construct an astronomical catalog from 55 TB of imaging data using Celeste, a Bayesian variational... 详细信息
来源: 评论
Matrix-normal models for fMRI analysis
arXiv
收藏 引用
arXiv 2017年
作者: Shvartsman, Michael Sundaram, Narayanan Aoi, Mikio C. Charles, Adam Wilke, Theodore L. Cohen, Jonathan D. Princeton Neuroscience Institute Princeton University Parallel Computing Lab Intel Corporation
Multivariate analysis of fMRI data has benefited sub-stantially from advances in machine learning. Most recently, a range of probabilistic latent variable models applied to fMRI data have been successful in a variety ... 详细信息
来源: 评论
RAIL: Risk-Averse Imitation Learning
arXiv
收藏 引用
arXiv 2017年
作者: Santara, Anirban Naik, Abhishek Ravindran, Balaraman Das, Dipankar Mudigere, Dheevatsa Avancha, Sasikanth Kaul, Bharat IIT Kharagpur IIT Madras Parallel Computing Lab-Intel Labs India
Imitation learning algorithms learn viable policies by imitating an expert's behavior when reward signals are not available. Generative Adversarial Imitation Learning (GAIL) is a state-of-the-art algorithm for lea... 详细信息
来源: 评论
Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients
IEEE Transactions on Technology and Society
收藏 引用
IEEE Transactions on Technology and Society 2022年 第4期3卷 272-289页
作者: Allahabadi, Himanshi Amann, Julia Balot, Isabelle Beretta, Andrea Binkley, Charles Bozenhard, Jonas Bruneault, Frederick Brusseau, James Candemir, Sema Cappellini, Luca Alessandro Chakraborty, Subrata Cherciu, Nicoleta Cociancig, Christina Coffee, Megan Ek, Irene Espinosa-Leal, Leonardo Farina, Davide Fieux-Castagnet, Genevieve Frauenfelder, Thomas Gallucci, Alessio Giuliani, Guya Golda, Adam Van Halem, Irmhild Hildt, Elisabeth Holm, Sune Kararigas, Georgios Krier, Sebastien A. Kuhne, Ulrich Lizzi, Francesca Madai, Vince I. Markus, Aniek F. Masis, Serg Mathez, Emilie Wiinblad Mureddu, Francesco Neri, Emanuele Osika, Walter Ozols, Matiss Panigutti, Cecilia Parent, Brendan Pratesi, Francesca Moreno-Sanchez, Pedro A. Sartor, Giovanni Savardi, Mattia Signoroni, Alberto Sormunen, Hanna-Maria Spezzatti, Andy Srivastava, Adarsh Stephansen, Annette F. Theng, Lau Bee Tithi, Jesmin Jahan Tuominen, Jarno Umbrello, Steven Vaccher, Filippo Vetter, Dennis Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Ey Netherlands Enterprise Intelligence Department Amsterdam1083 HP Netherlands Eth Zurich Health Ethics and Policy Lab Department of Health Sciences and Technology Zürich8092 Switzerland Center for Diplomatic and Strategic Studies Postgraduate Studies in Diplomacy and International Relations Paris75015 France Pisa56124 Italy Hackensack Meridian Health Bioethics Center EdisonNJ08820 United States University of Oxford Faculty of Philosophy OxfordOX2 6GG United Kingdom Collège André- Laurendeau Philosophie Department MontrealQCH8N 2J4 Canada Université du Québec À Montréal École des Médias MontrealQCH2L 2C4 Canada Pace University Philosophy Department New YorkNY10038 United States The Ohio State University Wexner Medical Center Department of Radiology ColumbusOH43210 United States Humanitas Research Hospital Department of Radiology Milan20089 Italy Humanitas University Department of Biomedical Sciences Milan20089 Italy University of New England Faculty of Science Agriculture Business and Law ArmidaleNSW2351 Australia University of Technology Sydney Faculty of Engineering and Information Technology SydneyNSW2007 Australia Scuola Superiore Sant'Anna European Centre of Excellence on the Regulation of Robotics and Ai Pisa56127 Italy University of Bremen Group of Computer Architecture Bremen28359 Germany New York University Grossman School of Medicine Division of Infectious Diseases and Immunology Department of Medicine New YorkNY10016 United States Digital Institute Ai Research Section Stockholm16731 Sweden Arcada University of Applied Sciences Department of Business Management and Analytics Helsinki00550 Finland University of Brescia Radiological Sciences and Public Health Department of Medical and Surgical Specialties Brescia25121 Italy Sncf Reseau Sa Ethique Groupe La Plaine93418 France Institute of Diagnostic and Interventional Radiology University Hospital Zurich Zürich8091 Switzerland Eindhoven University of Tech
This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of he... 详细信息
来源: 评论
Eliminating Irregularities of Protein Sequence Search on Multicore Architectures
Eliminating Irregularities of Protein Sequence Search on Mul...
收藏 引用
International Symposium on parallel and Distributed Processing (IPDPS)
作者: Jing Zhang Sanchit Misra Hao Wang Wu-chun Feng Dept. of Computer Science Virginia Tech Parallel Computing Lab Intel Corporation
Finding regions of local similarity between biological sequences is a fundamental task in computational biology. BLAST is the most widely-used tool for this purpose, but it suffers from irregularities due to its heuri... 详细信息
来源: 评论
Sparse Tensor Factorization on Many-Core Processors with High-Bandwidth Memory
Sparse Tensor Factorization on Many-Core Processors with Hig...
收藏 引用
International Symposium on parallel and Distributed Processing (IPDPS)
作者: Shaden Smith Jongsoo Park George Karypis Department of Computer Science and Engineering University of Minnesota Parallel Computing Lab Intel Corporation
HPC systems are increasingly used for data intensive computations which exhibit irregular memory accesses, non-uniform work distributions, large memory footprints, and high memory bandwidth demands. To address these c... 详细信息
来源: 评论