咨询与建议

限定检索结果

文献类型

  • 66 篇 会议
  • 33 篇 期刊文献

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 53 篇 计算机科学与技术...
    • 36 篇 软件工程
    • 14 篇 生物工程
    • 9 篇 信息与通信工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 4 篇 控制科学与工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 光学工程
    • 3 篇 电气工程
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 36 篇 数学
    • 15 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 物理学
    • 5 篇 化学
    • 3 篇 系统科学
    • 2 篇 地球物理学
  • 21 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 5 篇 社会学
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 7 篇 parallel process...
  • 6 篇 libraries
  • 6 篇 bandwidth
  • 6 篇 optimization
  • 6 篇 kernel
  • 5 篇 conferences
  • 5 篇 sparse matrices
  • 5 篇 computational mo...
  • 5 篇 coprocessors
  • 5 篇 instruction sets
  • 4 篇 runtime
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 distributed proc...
  • 4 篇 hardware
  • 4 篇 synchronization
  • 4 篇 data models
  • 3 篇 deep learning
  • 3 篇 convolution
  • 3 篇 vectors

机构

  • 12 篇 parallel computi...
  • 11 篇 parallel computi...
  • 7 篇 parallel computi...
  • 6 篇 parallel computi...
  • 3 篇 parallel computi...
  • 3 篇 parallel computi...
  • 2 篇 software enginee...
  • 2 篇 university of mi...
  • 2 篇 parallel computi...
  • 2 篇 parallel computi...
  • 2 篇 lawrence berkele...
  • 2 篇 ibm thomas j. wa...
  • 2 篇 school of comput...
  • 2 篇 riken center for...
  • 2 篇 department of co...
  • 2 篇 national energy ...
  • 2 篇 parallel computi...
  • 2 篇 center for space...
  • 2 篇 parallel computi...
  • 2 篇 princeton neuros...

作者

  • 14 篇 dubey pradeep
  • 10 篇 kaul bharat
  • 9 篇 mudigere dheevat...
  • 9 篇 satish nadathur
  • 9 篇 das dipankar
  • 7 篇 sundaram narayan...
  • 7 篇 avancha sasikant...
  • 6 篇 kundu abhisek
  • 6 篇 timothy g. matts...
  • 6 篇 banerjee kunal
  • 6 篇 mikhail smelyans...
  • 6 篇 mellempudi navee...
  • 6 篇 pradeep dubey
  • 5 篇 jeff r. hammond
  • 5 篇 bharat kaul
  • 5 篇 cohen jonathan d...
  • 5 篇 sanchit misra
  • 5 篇 jongsoo park
  • 5 篇 hammond jeff r.
  • 4 篇 chhugani jatin

语言

  • 98 篇 英文
  • 1 篇 其他
检索条件"机构=Intel Parallel Computing Lab"
99 条 记 录,以下是61-70 订阅
排序:
Controlled vs. Automatic Processing: A Graph-Theoretic Approach to the Analysis of Serial vs. parallel Processing in Neural Network Architectures  38
Controlled vs. Automatic Processing: A Graph-Theoretic Appro...
收藏 引用
38th Annual Meeting of the Cognitive Science Society: Recognizing and Representing Events, CogSci 2016
作者: Musslick, Sebastian Dey, Biswadip Özcimder, Kayhan Patwary, Md. Mostofa Ali Willke, Theodore L. Cohen, Jonathan D. Princeton Neuroscience Institute Princeton University PrincetonNJ08544 United States Department of Mechanical and Aerospace Engineering Princeton University PrincetonNJ08544 United States Parallel Computing Lab Intel Corporation Santa ClaraCA95054 United States
The limited ability to simultaneously perform multiple tasks is one of the most salient features of human performance and a defining characteristic of controlled processing. Based on the assumption that multitasking c... 详细信息
来源: 评论
Real-time full correlation matrix analysis of fMRI data
Real-time full correlation matrix analysis of fMRI data
收藏 引用
IEEE International Conference on Big Data
作者: Yida Wang Bryn Keller Mihai Capota Michael J. Anderson Narayanan Sundaram Jonathan D. Cohen Kai Li Nicholas B. Turk-Browne Theodore L. Willke Parallel Computing Lab Intel Corporation Princeton Neuroscience Institute Princeton University Department of Computer Science Princeton University
Real-time functional magnetic resonance imaging (rtfMRI) is an emerging approach for studying the functioning of the human brain. Computational challenges combined with high data velocity have to this point restricted... 详细信息
来源: 评论
Enabling factor analysis on thousand-subject neuroimaging datasets
Enabling factor analysis on thousand-subject neuroimaging da...
收藏 引用
IEEE International Conference on Big Data
作者: Michael J. Anderson Mihai Capota Javier S. Turek Xia Zhu Theodore L. Willke Yida Wang Po-Hsuan Chen Jeremy R. Manning Peter J. Ramadge Kenneth A. Norman Parallel Computing Lab Intel Corporation Hillsboro Oregon Princeton University Princeton New Jersey Dartmouth College Hanover New Hampshire
The scale of functional magnetic resonance image data is rapidly increasing as large multi-subject datasets are becoming widely available and high-resolution scanners are adopted. The inherent low-dimensionality of th... 详细信息
来源: 评论
Using behavior to decode allocation of attention in context dependent decision making  14
Using behavior to decode allocation of attention in context ...
收藏 引用
14th International Conference on Cognitive Modeling, ICCM 2016
作者: Shvartsman, Michael Srivastava, Vaibhav Sundaram, Narayanan Cohen, Jonathan D. Princeton Neuroscience Institute Washington Rd. PrincetonNJ08544 United States Department of Mechanical and Aerospace Engineering 41 Olden St. PrincetonNJ08544 United States Intel Parallel Computing Lab 2200 Mission College Blvd. Santa ClaraCA95054 United States
We present a model of the dynamics of adaptive attention allocation in the AX Continuous Performance Test (AX-CPT), a simple context dependent decision making task of interest to the research communities concerned wit... 详细信息
来源: 评论
MILC staggered conjugate gradient performance on intel KNL  34
MILC staggered conjugate gradient performance on Intel KNL
收藏 引用
34th Annual International Symposium on Lattice Field Theory, LATTICE 2016
作者: Li, Ruizi DeTar, Carleton Doerfler, Douglas Gottlieb, Steven Jha, Ashish Kalamkar, Dhiraj Toussaint, Doug Department of Physics Indiana University BloomingtonIN47405 United States Department of Physics and Astronomy University of Utah Salt Lake CityUT84112 United States National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Software and Services Group Intel Corporation HillsboroOR97124 United States Parallel Computing Lab Intel Labs Bangalore560103 India Physics Department University of Arizona TucsonAZ85721 United States
We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the intel Knights Landing (KNL) architecture. KNL is the second generation intel Xeon Phi processor. It... 详细信息
来源: 评论
A proposal to OpenMP for addressing the CPU oversubscription challenge
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial intelligence and Lecture Notes in Bioinformatics) 2016年 9903 LNCS卷 187-202页
作者: Yan, Yonghong Hammond, Jeff R. Liao, Chunhua Eichenberger, Alexandre E. Department of Computer Science and Engineering Oakland University Rochester United States Parallel Computing Lab Intel Corp. Santa Clara United States Center for Applied Scientific Computing Lawrence Livermore National Laboratory Livermore United States Thomas J. Watson Research Center IBM Yorktown Heights United States OpenMP Interoperability Language Subcommittee Houston United States
OpenMP has become a successful programming model for developing multi-threaded applications. However, there are still some challenges in terms of OpenMP’s interoperability within itself and with other parallel progra... 详细信息
来源: 评论
Using the parallel Research Kernels to Study PGAS Models
Using the Parallel Research Kernels to Study PGAS Models
收藏 引用
International Conference on Partitioned Global Address Space Programming Models (PGAS)
作者: Rob F. Van Der Wijngaart Srinivas Sridharan Abdullah Kayi Gabriele Jost Jeff R. Hammond Timothy G. Mattson Jacob E. Nelson University of Washington Seattle WA US Intel Corp. Parallel Computing Lab USA Intel Corp. Parallel Computing Lab University of Washington
A subset of the parallel Research Kernels (PRK),simplified parallel application patterns, are used to study the behavior of different runtimes implementing the PGAS programming model. The goal of this paper is to show... 详细信息
来源: 评论
Full correlation matrix analysis of fMRI data on intel Xeon Phi coprocessors
Full correlation matrix analysis of fMRI data on Intel Xeon ...
收藏 引用
International Conference for High Performance computing, Networking, Storage and Analysis, SC 2015
作者: Wang, Yida Anderson, Michael J. Cohen, Jonathan D. Heinecke, Alexander Li, Kai Satish, Nadathur Sundaram, Narayanan Turk-Browne, Nicholas B. Willke, Theodore L. Department of Computer Science Princeton University United States Parallel Computing Lab Intel Corporation United States Princeton Neuroscience Institute Princeton University United States
Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answ... 详细信息
来源: 评论
Improving graph partitioning for modern graphs and architectures  5
Improving graph partitioning for modern graphs and architect...
收藏 引用
5th Workshop on Irregular Applications: Architectures and Algorithms, IA3 2015
作者: Lasalle, Dominique Patwary, Md Mostofa Ali Satish, Nadathur Sundaram, Narayanan Dubey, Pradeep Karypis, George Department of Computer Science and Engineering University of Minnesota Minneapolis MN55455 United States Parallel Computing Lab Intel Corporation Santa ClaraCA95054 United States
Graph partitioning is an important preprocessing step in applications dealing with sparse-irregular data. As such, the ability to efficiently partition a graph in parallel is crucial to the performance of these applic... 详细信息
来源: 评论
Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern parallel Systems
Exploring Shared-Memory Optimizations for an Unstructured Me...
收藏 引用
International Symposium on parallel and Distributed Processing (IPDPS)
作者: Dheevatsa Mudigere Srinivas Sridharan Anand Deshpande Jongsoo Park Alexander Heinecke Mikhail Smelyanskiy Bharat Kaul Pradeep Dubey Dinesh Kaushik David Keyes Parallel Computing Lab Intel Corporation Bangalore India Parallel Computing Lab Intel Corporation Santa Clara CA Qatar Foundation Doha Qatar King Abdullah University of Science and Technology Thuwal Saudi Arabia
In this work, we revisit the 1999 Gordon Bell Prize winning PETSc-FUN3D aerodynamics code, extending it with highly-tuned shared-memory parallelization and detailed performance analysis on modern highly parallel archi... 详细信息
来源: 评论