咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 149 篇 会议
  • 3 册 图书

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 141 篇 计算机科学与技术...
    • 110 篇 软件工程
    • 39 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 17 篇 生物工程
    • 10 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 光学工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 网络空间安全
    • 6 篇 机械工程
    • 5 篇 化学工程与技术
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 95 篇 理学
    • 46 篇 数学
    • 25 篇 物理学
    • 25 篇 生物学
    • 23 篇 统计学(可授理学、...
    • 11 篇 化学
    • 11 篇 系统科学
  • 51 篇 管理学
    • 30 篇 图书情报与档案管...
    • 20 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 20 篇 法学
    • 19 篇 社会学
  • 20 篇 医学
    • 16 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
    • 5 篇 药学(可授医学、理...
  • 12 篇 教育学
    • 9 篇 教育学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 3 篇 农学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 7 篇 feature extracti...
  • 6 篇 training
  • 5 篇 servers
  • 5 篇 computational mo...
  • 5 篇 semantics
  • 4 篇 anomaly detectio...
  • 4 篇 network security
  • 4 篇 artificial intel...
  • 4 篇 accuracy
  • 4 篇 forecasting
  • 3 篇 knowledge engine...
  • 3 篇 deep learning
  • 3 篇 application soft...
  • 3 篇 dictionaries
  • 3 篇 videos
  • 3 篇 speech processin...
  • 3 篇 bandwidth
  • 3 篇 matching pursuit...
  • 3 篇 benchmarking
  • 3 篇 machine learning

机构

  • 39 篇 research center ...
  • 20 篇 school of comput...
  • 13 篇 harbin institute...
  • 12 篇 china center for...
  • 11 篇 research center ...
  • 11 篇 college of compu...
  • 9 篇 inner mongolia e...
  • 9 篇 college of manag...
  • 9 篇 school of busine...
  • 9 篇 inner mongolia k...
  • 8 篇 department of ma...
  • 8 篇 research center ...
  • 8 篇 research center ...
  • 8 篇 research center ...
  • 6 篇 research center ...
  • 6 篇 hebei key labora...
  • 6 篇 school of econom...
  • 6 篇 school of inform...
  • 5 篇 institute of sci...
  • 5 篇 tsinghua univers...

作者

  • 29 篇 che wanxiang
  • 28 篇 liu ting
  • 19 篇 qin libo
  • 17 篇 chen qiguang
  • 13 篇 qin bing
  • 12 篇 xiong xiong
  • 10 篇 liu bin
  • 9 篇 jian-tao zhou
  • 8 篇 tsao yu
  • 8 篇 zhou wei-xing
  • 8 篇 guimin huang
  • 8 篇 zhang hongbin
  • 7 篇 wang hsin-min
  • 7 篇 shahzad sahibzad...
  • 7 篇 zhao dongmei
  • 6 篇 pingshan liu
  • 6 篇 ya zhou
  • 6 篇 wanxiang che
  • 6 篇 hashmi ammarah
  • 5 篇 liefeng bo

语言

  • 278 篇 英文
  • 19 篇 其他
  • 6 篇 中文
检索条件"机构=Intel Science and Technology Center for Social Computing"
301 条 记 录,以下是1-10 订阅
排序:
A Self-verified Method for Exploring Simile Knowledge from Pre-trained Language Models  30
A Self-verified Method for Exploring Simile Knowledge from P...
收藏 引用
Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
作者: Ma, Longxuan Ke, Changxin Zhou, Shuhan Sun, Churui Zhang, Weinan Liu, Ting Research Center for Social Computing and Information Retrieval School of Computer Science Harbin Institute of Technology China
Simile tasks are challenging in natural language processing (NLP) because models require adequate world knowledge to produce predictions. In recent years, pre-trained language models (PLMs) have succeeded in NLP since... 详细信息
来源: 评论
How does Architecture Influence the Base Capabilities of Pre-trained Language Models? A Case Study Based on FFN-Wider and MoE Transformers  38
How does Architecture Influence the Base Capabilities of Pre...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Lu, Xin Zhao, Yanyan Qin, Bing Huo, Liangyu Yang, Qing Xu, Dongliang Research Center for Social Computing and Information Retrieval Harbin Institute of Technology China Science Technology Co. Ltd. China
Pre-trained language models have been proven to possess strong base capabilities, which not only excel in in-distribution language modeling but also show powerful abilities in out-of-distribution language modeling, tr...
来源: 评论
OneBit: Towards Extremely Low-bit Large Language Models  38
OneBit: Towards Extremely Low-bit Large Language Models
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Xu, Yuzhuang Han, Xu Yang, Zonghan Wang, Shuo Zhu, Qingfu Liu, Zhiyuan Liu, Weidong Che, Wanxiang Research Center for Social Computing and Information Retrieval Harbin Institute of Technology Harbin China Department of Computer Science & Technology Tsinghua University Beijing China
Model quantification uses low bit-width values to represent the weight matrices of existing models to be quantized, which is a promising approach to reduce both storage and computational overheads of deploying highly ...
来源: 评论
STB-GraCapsNet: A Novel Capsule Network Structure with Swin Transformer Block  25th
STB-GraCapsNet: A Novel Capsule Network Structure with Swin...
收藏 引用
25th International Conference on Parallel and Distributed computing, Applications and Technologies, PDCAT 2024
作者: Zhang, Chunying Dong, Ziao Wang, Liya Liu, Lu Ren, Jing Ma, Jiang Liu, Bin College of Science North China University of Science and Technology 21 Bohai Road Caofeidian Xincheng Hebei Tangshan063210 China Big data and Social Computing Research Center Hebei University of Science and Technology Hebei Shijiazhuang0500198 China
Capsule network is a new type of neural network encoding features into capsules and constructing the part-whole relationships, which demonstrated good performance in image classification. However, it has some issues s... 详细信息
来源: 评论
POPA: Expressing High and Portable Performance across Spatial and Vector Architectures for Tensor Computations  24
POPA: Expressing High and Portable Performance across Spatia...
收藏 引用
32nd ACM International Symposium on Field-Programmable Gate Arrays, FPGA 2024
作者: Hao, Xiaochen Rong, Hongbo Zhang, Mingzhe Sun, Ce Jiang, Hong Liang, Yun Peking University China Parallel Computing Lab Intel United States Tsinghua University China University of Science and Technology of China China Intel United States Peking University & Beijing Advanced Innovation Center for Integrated Circuits China
This paper aims at high and portable performance for tensor computations across spatial (e.g., FPGAs) and vector architectures (e.g., GPUs). The state-of-the-art usually address performance portability across vector a... 详细信息
来源: 评论
Meaningful Learning: Enhancing Abstract Reasoning in Large Language Models via Generic Fact Guidance  38
Meaningful Learning: Enhancing Abstract Reasoning in Large L...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Xiong, Kai Ding, Xiao Liu, Ting Qin, Bing Xu, Dongliang Yang, Qing Liu, Hongtao Cao, Yixin Research Center for Social Computing and Information Retrieval Harbin Institute of Technology Harbin China Fudan University Shanghai China Science Technology Co. Ltd. Beijing China
Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios, marking a significant stride towards mimicking human-like intelligence. Despite this, wh...
来源: 评论
OpenSLU: A unified, modularized, and extensible toolkit for spoken language understanding  61
OpenSLU: A unified, modularized, and extensible toolkit for ...
收藏 引用
61st Annual Meeting of the Association for Computational Linguistics, ACL-DEMO 2023
作者: Qin, Libo Chen, Qiguang Xu, Xiao Feng, Yunlong Che, Wanxiang School of Computer Science and Engineering Central South University China Research Center for Social Computing and Information Retrieval Harbin Institute of Technology China
Spoken Language Understanding (SLU) is one of the core components of a task-oriented dialogue system, which aims to extract the semantic meaning of user queries (e.g., intents and slots). In this work, we introduce Op... 详细信息
来源: 评论
Technological acceptance of non-native speakers on language learning mobile application using augmented reality
收藏 引用
Multimedia Tools and Applications 2025年 1-32页
作者: Suwadi, Nur Asylah Lam, Meng Chun Majid, Nazatul Aini Abd Jalaluddin, Nor Hashimah Aisyah, Aznur Kasdan, Junaini Hussain, Afifuddin Husairi Ahmad, Azlan Ma’arof, Daing Zairi Mixed Reality and Pervasive Computing Lab Center for Artificial Intelligence Technology Faculty of Information Science & Technology Universiti Kebangsaan Malaysia Bangi43600 Malaysia Center for Research in Language and Linguistics Faculty of Social Sciences and Humanities Universiti Kebangsaan Malaysia Bangi43600 Malaysia Universiti Kebangsaan Malaysia Bangi43600 Malaysia Pusat Citra Universiti Universiti Kebangsaan Malaysia Bangi43600 Malaysia
Although mobile applications have been widely used, there is limited research on the acceptance of mobile-based applications for language learning among foreign learners. Hence, we propose an extended version of the T... 详细信息
来源: 评论
What Factors Affect Multi-Modal In-Context Learning? An In-Depth Exploration  38
What Factors Affect Multi-Modal In-Context Learning? An In-D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Qin, Libo Chen, Qiguang Fei, Hao Chen, Zhi Li, Min Che, Wanxiang School of Computer Science and Engineering Central South University China Research Center for Social Computing and Information Retrieval China Harbin Institute of Technology China Tsinghua University China ByteDance China
Recently, rapid advancements in Multi-Modal In-Context Learning (MM-ICL) have achieved notable success, which is capable of achieving superior performance across various tasks without requiring additional parameter tu...
来源: 评论
Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought  38
Unlocking the Capabilities of Thought: A Reasoning Boundary ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Chen, Qiguang Qin, Libo Wang, Jiaqi Zhou, Jinxuan Che, Wanxiang Research Center for Social Computing and Information Retrieval China Harbin Institute of Technology China School of Computer Science and Engineering Central South University China The Chinese University of Hong Kong Hong Kong
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs) on complex reasoning tasks. Recently, a series of studies attempt to explain the mecha...
来源: 评论