咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 45 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 92 篇 工学
    • 55 篇 计算机科学与技术...
    • 50 篇 软件工程
    • 16 篇 信息与通信工程
    • 16 篇 控制科学与工程
    • 16 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 光学工程
    • 8 篇 航空宇航科学与技...
    • 8 篇 生物工程
    • 7 篇 机械工程
    • 7 篇 电气工程
    • 6 篇 仪器科学与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
    • 3 篇 轻工技术与工程
    • 2 篇 建筑学
  • 52 篇 理学
    • 36 篇 数学
    • 23 篇 物理学
    • 8 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 地球物理学
    • 2 篇 系统科学
  • 18 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 12 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 8 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 17 篇 image processing
  • 14 篇 image segmentati...
  • 10 篇 pattern recognit...
  • 10 篇 artificial intel...
  • 8 篇 laboratories
  • 8 篇 intelligent cont...
  • 7 篇 discrete wavelet...
  • 7 篇 feature extracti...
  • 7 篇 signal processin...
  • 7 篇 image reconstruc...
  • 6 篇 pixel
  • 6 篇 biomedical imagi...
  • 6 篇 hardware
  • 6 篇 image recognitio...
  • 6 篇 image sequences
  • 6 篇 digital signal p...
  • 6 篇 layout
  • 5 篇 object detection
  • 5 篇 ultrasonic imagi...
  • 5 篇 convolution

机构

  • 15 篇 institute for pa...
  • 7 篇 institute of pat...
  • 6 篇 state education ...
  • 5 篇 state key labora...
  • 4 篇 department of au...
  • 4 篇 school of comput...
  • 4 篇 center for advan...
  • 3 篇 college of elect...
  • 3 篇 institute for pa...
  • 3 篇 key laboratory o...
  • 3 篇 laboratory for i...
  • 3 篇 college of life ...
  • 3 篇 institute for pa...
  • 3 篇 university of ch...
  • 3 篇 school of life s...
  • 3 篇 institute of pat...
  • 3 篇 china three gorg...
  • 3 篇 institute for pa...
  • 2 篇 key laboratory m...
  • 2 篇 institute for as...

作者

  • 14 篇 liu jian
  • 13 篇 jian liu
  • 12 篇 ding mingyue
  • 10 篇 zhang tianxu
  • 9 篇 tian jinwen
  • 9 篇 mingyue ding
  • 8 篇 jin-wen tian
  • 7 篇 cai chao
  • 7 篇 jinwen tian
  • 7 篇 tian jin-wen
  • 6 篇 sang nong
  • 6 篇 tianxu zhang
  • 5 篇 hong hanyu
  • 5 篇 xin yang
  • 5 篇 zhang xiuhua
  • 5 篇 ming yuchi
  • 4 篇 sun yangguang
  • 4 篇 zhou chengping
  • 4 篇 jiaoying jin
  • 4 篇 gong chen

语言

  • 132 篇 英文
  • 9 篇 中文
  • 7 篇 其他
检索条件"机构=Intelligence Recognition and Image Processing Laboratory"
148 条 记 录,以下是1-10 订阅
排序:
Research on the Detection of Abnormal Cervical Cells Based on Improved YOLOv7  9
Research on the Detection of Abnormal Cervical Cells Based o...
收藏 引用
9th International Conference on Intelligent Computing and Signal processing, ICSP 2024
作者: Wang, Xuewei Yuan, Shuang Yang, Lidong Niu, Dawei Inner Mongolia University of Science and Technology School of Digtial and Intelligence Industry Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing Inner Mongolia China
Cervical cytologic screening is clinically important for the prevention and diagnosis of cervical cancer. Aiming at the many challenges in the detection of abnormal cervical cells, including the difficult detection of... 详细信息
来源: 评论
Dynamic Frame Interpolation in Wavelet Domain
收藏 引用
IEEE Transactions on image processing 2023年 32卷 5296-5309页
作者: Kong, Lingtong Jiang, Boyuan Luo, Donghao Chu, Wenqing Tai, Ying Wang, Chengjie Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Department of Automation Shanghai200240 China Tencent Youtu Laboratory Shanghai200233 China Nanjing University School of Intelligence Science and Technology Suzhou215163 China
Video frame interpolation is an important low-level vision task, which can increase frame rate for more fluent visual experience. Existing methods have achieved great success by employing advanced motion models and sy... 详细信息
来源: 评论
Research on the Detection of Abnormal Cervical Cells Based on Improved YOLOv7
Research on the Detection of Abnormal Cervical Cells Based o...
收藏 引用
6th International Conference on Intelligent Computing and Signal processing (ICSP)
作者: Xuewei Wang Shuang Yuan Lidong Yang Dawei Niu Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing Inner Mongolia University of Science and Technology School of Digtial and Intelligence Industry Inner Mongolia China
Cervical cytologic screening is clinically important for the prevention and diagnosis of cervical cancer. Aiming at the many challenges in the detection of abnormal cervical cells, including the difficult detection of... 详细信息
来源: 评论
Generating Cartoon images from Face Photos with Cycle-Consistent Adversarial Networks
收藏 引用
Computers, Materials & Continua 2021年 第11期69卷 2733-2747页
作者: Tao Zhang Zhanjie Zhang Wenjing Jia Xiangjian He Jie Yang School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi214000China Key Laboratory of Artificial Intelligence Jiangsu214000China The Global Big Data Technologies Centre University of Technology SydneyUltimoNSW2007Australia The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong UniversityShanghai201100China
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications... 详细信息
来源: 评论
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
arXiv
收藏 引用
arXiv 2024年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Ridgeless regression has garnered attention among researchers, particularly in light of the "Benign Overfitting" phenomenon, where models interpolating noisy samples demonstrate robust generalization. Howeve... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation  39
Hybrid Data-Free Knowledge Distillation
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
Mushroom Classification Based on Deep Residual Network
Mushroom Classification Based on Deep Residual Network
收藏 引用
Pattern recognition and Machine Learning (PRML), IEEE International Conference on
作者: Ju Feng Xufeng Ling Yubo Wang Jie Yang School of Artificial Intelligence Shanghai Normal University Tianhua College Shanghai China Shanghai Acoustics Laboratory Chinese Academy of Sciences Shanghai China Institute of Image Processing and Pattern Recognition and Institute of Medical Robotics Shanghai Jiaotong University Shanghai China
Due to the similarity in mushroom features and the difficulty in distinguishing between poisonous and nonpoisonous varieties, mushrooms pose a threat to human health. To address the challenge of mushroom classificatio...
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning  39
Modeling Inter-Intra Heterogeneity for Graph Federated Learn...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Engineering Research Center of Trustworthy AI Ministry of Education Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论