咨询与建议

限定检索结果

文献类型

  • 44 篇 会议
  • 30 篇 期刊文献

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 45 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 7 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 林业工程
  • 28 篇 理学
    • 17 篇 数学
    • 10 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 6 篇 generative adver...
  • 6 篇 semantics
  • 4 篇 image segmentati...
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 image color anal...
  • 3 篇 visualization
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 breast cancer
  • 2 篇 graph neural net...
  • 2 篇 mapreduce
  • 2 篇 sports
  • 2 篇 clustering algor...
  • 2 篇 accuracy
  • 2 篇 mathematical mod...
  • 2 篇 forecasting
  • 1 篇 program debuggin...
  • 1 篇 image enhancemen...

机构

  • 30 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 school of cyber ...
  • 3 篇 key lab. of mach...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 intelligent comp...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 12 篇 zengchang qin
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 hu yue
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 sun yajing
  • 3 篇 li pengyu
  • 3 篇 chang xiangyu
  • 3 篇 he qing
  • 3 篇 li ning

语言

  • 72 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing & Machine Learning Lab"
74 条 记 录,以下是1-10 订阅
排序:
Can Gaussian Sketching Converge Faster on a Preconditioned Landscape?  41
Can Gaussian Sketching Converge Faster on a Preconditioned L...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Wang, Yilong Ye, Haishan Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China Singapore College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce... 详细信息
来源: 评论
Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods  41
Double Stochasticity Gazes Faster: Snap-Shot Decentralized S...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China College of Computing and Data Science NTU Singapore Singapore
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient  41
Double Variance Reduction: A Smoothing Trick for Composite O...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论
Deep learning for Prediction of Population of Acetes in Avoiding Biological Hazards for Nuclear Power Plants  14
Deep Learning for Prediction of Population of Acetes in Avoi...
收藏 引用
14th International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC 2022
作者: Dai, Li Zhang, Rongyong Huang, Suyuan Liu, Junyi Li, Qi Zhang, Zhen Jiang, Xinshu Qin, Zengchang China Nuclear Power Engineering Co. Ltd Beijing China Beihang University Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beijing China
There have been frequent incidents of water intake blockage due to marine organisms, which pose a serious threat to the normal operation of nuclear power plants across the world. In order to avoid biological hazards f... 详细信息
来源: 评论
Caseg: Clip-Based Action Segmentation With Learnable Text Prompt
Caseg: Clip-Based Action Segmentation With Learnable Text Pr...
收藏 引用
IEEE International Conference on Image Processing
作者: Suyuan Huang Haoxin Zhang Yanyu Xu Yan Gao Yao Hu Zengchang Qin Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Xiaohongshu Inc. Institute of High Performance Computing A*Star Guangzhou Zhongsuan Cloud Technology Co.. Ltd.
Video action segmentation aims to identify and localize actions. Existing models have achieved impressive performance with pre-extracted frame-level features, but this may limit zero-shot learning and cross-dataset in... 详细信息
来源: 评论
Multi-View Document Representation learning for Open-Domain Dense Retrieval
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Shunyu Liang, Yaobo Gong, Ming Jiang, Daxin Duan, Nan Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Microsoft Research Asia China Microsoft STC Asia
Dense retrieval has achieved impressive advances in first-stage retrieval from a large-scale document collection, which is built on bi-encoder architecture to produce single vector representation of query and document... 详细信息
来源: 评论
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
arXiv
收藏 引用
arXiv 2022年
作者: He, Zheng Xie, Zeke Zhu, Quanzhi Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China The University of Tokyo Japan RIKEN Center for AIP Japan
People usually believe that network pruning not only reduces the computational cost of deep networks, but also prevents overfitting by decreasing model capacity. However, our work surprisingly discovers that network p... 详细信息
来源: 评论
Double variance reduction: a smoothing trick for composite optimization problems without first-order gradient  24
Double variance reduction: a smoothing trick for composite o...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Hao Di Haishan Ye Yueling Zhang Xiangyu Chang Guang Dai Ivor W. Tsang Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China and SGIT AI Lab State Grid Corporation of China International Business School Beijing Foreign Studies University Beijing China Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China CFAR and IHPC Agency for Science Technology and Research (A*STAR) Singapore and College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p...
来源: 评论
Reasoning with Multi-Structure Commonsense Knowledge in Visual Dialog
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Shunyu Jiang, Xiaoze Yang, Zequn Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China School of BSME Beijing Advanced Innovation Center for Biomedical Engineering Beihang University China
Visual Dialog requires an agent to engage in a conversation with humans grounded in an image. Many studies on Visual Dialog focus on the understanding of the dialog history or the content of an image, while a consider... 详细信息
来源: 评论
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient
arXiv
收藏 引用
arXiv 2024年
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论