咨询与建议

限定检索结果

文献类型

  • 44 篇 会议
  • 30 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 75 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 45 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 7 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 林业工程
  • 28 篇 理学
    • 17 篇 数学
    • 10 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 6 篇 generative adver...
  • 6 篇 semantics
  • 4 篇 image segmentati...
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 image color anal...
  • 3 篇 visualization
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 breast cancer
  • 2 篇 graph neural net...
  • 2 篇 mapreduce
  • 2 篇 sports
  • 2 篇 clustering algor...
  • 2 篇 accuracy
  • 2 篇 mathematical mod...
  • 2 篇 forecasting
  • 1 篇 program debuggin...
  • 1 篇 image enhancemen...

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 school of cyber ...
  • 3 篇 key lab. of mach...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 intelligent comp...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 hu yue
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 sun yajing
  • 3 篇 li pengyu
  • 3 篇 chang xiangyu
  • 3 篇 he qing
  • 3 篇 li ning

语言

  • 73 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing & Machine Learning Lab"
75 条 记 录,以下是11-20 订阅
排序:
What is the basic semantic unit of chinese language? A computational approach based on topic models
What is the basic semantic unit of chinese language? A compu...
收藏 引用
12th Meeting on Mathematics of Language, MOL 12
作者: Zhao, Qi Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab. School of Automation Science and Electrical Engineering Beihang University Beijing China Robotics Institute Carnegie Mellon University United States
Chinese language has been generally regarded as a Subject-Verb -Object (SVO) language and the basic semantic unit is the Chinese word that is usually consisted by two or more Chinese characters. However, word-centered... 详细信息
来源: 评论
Uncertainty Modeling for Data Mining  1
收藏 引用
丛书名: Advanced Topics in Science and Technology in China
1000年
作者: Zengchang Qin Yongchuan Tang
来源: 评论
Follow me up sports: New benchmark for 2d human keypoint recognition  2nd
Follow me up sports: New benchmark for 2d human keypoint rec...
收藏 引用
2nd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2019
作者: Huang, Ying Sun, Bin Kan, Haipeng Zhuang, Jiankai Qin, Zengchang Alibaba Business School Hangzhou Normal University Hangzhou China Keep Inc Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China
Human pose estimation has made significant advancement in recent years. However, the existing datasets are limited in their coverage of pose variety. In this paper, we introduce a novel benchmark "FollowMeUp Spor... 详细信息
来源: 评论
Generative Cooperative Net for Image Generation and Data Augmentation 2018
arXiv
收藏 引用
arXiv 2017年
作者: Xu, Qiangeng Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab Beihang University Beijing China
How to build a good model for image generation given an abstract concept is a fundamental problem in computer vision. In this paper, we explore a generative model for the task of generating unseen images with desired ... 详细信息
来源: 评论
Deep learning for Prediction of Population of Acetes in Avoiding Biological Hazards for Nuclear Power Plants  14
Deep Learning for Prediction of Population of Acetes in Avoi...
收藏 引用
14th International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC 2022
作者: Dai, Li Zhang, Rongyong Huang, Suyuan Liu, Junyi Li, Qi Zhang, Zhen Jiang, Xinshu Qin, Zengchang China Nuclear Power Engineering Co. Ltd Beijing China Beihang University Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beijing China
There have been frequent incidents of water intake blockage due to marine organisms, which pose a serious threat to the normal operation of nuclear power plants across the world. In order to avoid biological hazards f... 详细信息
来源: 评论
A k-hyperplane-based neural network for non-linear regression
A k-hyperplane-based neural network for non-linear regressio...
收藏 引用
IEEE International Conference on Cognitive Informatics
作者: He, Hongmei Qin, Zengchang Department of Engineering Mathematics University of Bristol Bristol United Kingdom Intelligent Computing and Machine Learning Lab. School of Automation and Electrical Engineering Beihang University Beijing 100191 China
For the time series prediction problem, the relationship between the abstracted independent variables and the response variable is usually strong non-linear. We propose a neural network fusion model based on k-hyperpl... 详细信息
来源: 评论
WAVELET-BASED STATISTICAL FEATURES FOR DISTINGUISHING MITOTIC AND NON-MITOTIC CELLS IN BREAST CANCER HISTOPATHOLOGY
WAVELET-BASED STATISTICAL FEATURES FOR DISTINGUISHING MITOTI...
收藏 引用
IEEE International Conference on Image Processing
作者: Tao Wan Xu Liu Jianhui Chen Zengchang Qin Intelligent Computing and Machine Learning Lab Beihang University No 91 Central Hospital of PLA
To diagnose breast cancer (BCa), the number of mitotic cells present in tissue sections is an important parameter to examine and grade breast biopsy specimen. The differentiation of mitotic from non-mitotic cells in b... 详细信息
来源: 评论
Wavelet-based statistical features for distinguishing mitotic and non-mitotic cells in breast cancer histopathology
Wavelet-based statistical features for distinguishing mitoti...
收藏 引用
作者: Wan, Tao Liu, Xu Chen, Jianhui Qin, Zengchang Intelligent Computing and Machine Learning Lab Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China No 91 Central Hospital of PLA Henan454003 China
To diagnose breast cancer (BCa), the number of mitotic cells present in tissue sections is an important parameter to examine and grade breast biopsy specimen. The differentiation of mitotic from non-mitotic cells in b... 详细信息
来源: 评论
Can Gaussian Sketching Converge Faster on a Preconditioned Landscape?  41
Can Gaussian Sketching Converge Faster on a Preconditioned L...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Wang, Yilong Ye, Haishan Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China Singapore College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce... 详细信息
来源: 评论
Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods  41
Double Stochasticity Gazes Faster: Snap-Shot Decentralized S...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China College of Computing and Data Science NTU Singapore Singapore
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论