咨询与建议

限定检索结果

文献类型

  • 44 篇 会议
  • 30 篇 期刊文献

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 45 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 7 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 林业工程
  • 28 篇 理学
    • 17 篇 数学
    • 10 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 6 篇 generative adver...
  • 6 篇 semantics
  • 4 篇 image segmentati...
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 image color anal...
  • 3 篇 visualization
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 breast cancer
  • 2 篇 graph neural net...
  • 2 篇 mapreduce
  • 2 篇 sports
  • 2 篇 clustering algor...
  • 2 篇 accuracy
  • 2 篇 mathematical mod...
  • 2 篇 forecasting
  • 1 篇 program debuggin...
  • 1 篇 image enhancemen...

机构

  • 30 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 school of cyber ...
  • 3 篇 key lab. of mach...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 intelligent comp...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 12 篇 zengchang qin
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 hu yue
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 sun yajing
  • 3 篇 li pengyu
  • 3 篇 chang xiangyu
  • 3 篇 he qing
  • 3 篇 li ning

语言

  • 72 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing & Machine Learning Lab"
74 条 记 录,以下是21-30 订阅
排序:
Prior Visual Relationship Reasoning For Visual Question Answering
Prior Visual Relationship Reasoning For Visual Question Answ...
收藏 引用
IEEE International Conference on Image Processing
作者: Zhuoqian Yang Zengchang Qin Jing Yu Tao Wan Robotics Institute Carnegie Mellon University Pittsburgh PA USA Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Institute of Information Engineering CAS China School of Biological Science and Medical Engineering Beihang University Beijing China
Visual Question Answering (VQA) is a representative task of cross-modal reasoning where an image and a free-form question in natural language are presented and the correct answer needs to be determined using both visu... 详细信息
来源: 评论
DAM: Deliberation, Abandon and Memory Networks for Generating Detailed and Non-repetitive Responses in Visual Dialogue
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Xiaoze Yu, Jing Sun, Yajing Qin, Zengchang Zhu, Zihao Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China AI Research Codemao Inc University of Adelaide Australia
Visual Dialogue task requires an agent to be engaged in a conversation with human about an image. The ability of generating detailed and non-repetitive responses is crucial for the agent to achieve human-like conversa... 详细信息
来源: 评论
Multi-level network for high-speed multi-person pose estimation
arXiv
收藏 引用
arXiv 2019年
作者: Huang, Ying Zhuang, Jiankai Qin, Zengchang Alibaba Business School Hangzhou Normal University Hangzhou Intelligent Computing and Machine Learning Lab School of Asee Beihang University Beijing
In multi-person pose estimation, the left/right joint type discrimination is always a hard problem because of the similar appearance. Traditionally, we solve this problem by stacking multiple refinement modules to inc... 详细信息
来源: 评论
Generative cooperative net for image generation and data augmentation  7th
Generative cooperative net for image generation and data aug...
收藏 引用
7th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2019
作者: Xu, Qiangeng Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China Department of Computer Science University of Southern California Los Angeles United States Keep Labs Keep Inc. Beijing China School of Biological Science and Medical Engineering Beihang University Beijing China
How to build a good model for image generation given an abstract concept is one of fundamental problems in computer vision. In this paper, we explore a generative model for the task of generating fictitious images wit... 详细信息
来源: 评论
Followmeup sports: new benchmark for 2D human keypoint recognition
arXiv
收藏 引用
arXiv 2019年
作者: Huang, Ying Sun, Bin Kan, Haipeng Zhuang, Jiankai Qin, Zengchang Alibaba Business School Hangzhou Normal University Hangzhou China Keep Inc. Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China
Human pose estimation has made significant advancement in recent years. However, the existing datasets are limited in their coverage of pose variety. In this paper, we introduce a novel benchmark"FollowMeUp Sport... 详细信息
来源: 评论
DualVD: An adaptive dual encoding model for deep visual understanding in visual dialogue
arXiv
收藏 引用
arXiv 2019年
作者: Jiang, Xiaoze Yu, Jing Qin, Zengchang Zhuang, Yingying Zhang, Xingxing Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China Microsoft Research Asia Beijing China University of Adelaide Australia
Different from Visual Question Answering task that requires to answer only one question about an image, Visual Dialogue involves multiple questions which cover a broad range of visual content that could be related to ... 详细信息
来源: 评论
Scene Graph Reasoning with Prior Visual Relationship for Visual Question Answering
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Zhuoqian Qin, Zengchang Yu, Jing Hu, Yue Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beihang University Institute of Information Engineering Chinese Academy of Sciences
One of the key issues of Visual Question Answering (VQA) is to reason with semantic clues in the visual content under the guidance of the question, how to model relational semantics still remains as a great challenge.... 详细信息
来源: 评论
Pixel level data augmentation for semantic image segmentation using generative adversarial networks
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Shuangting Zhang, Jiaqi Chen, Yuxin Liu, Yifan Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Keep Labs Keep Inc School of Biological Science and Medical Engineering Beihang University
Semantic segmentation is one of the basic topics in computer vision, it aims to assign semantic labels to every pixel of an image. Unbalanced semantic label distribution could have a negative influence on segmentation... 详细信息
来源: 评论
Semantic modeling of textual relationships in cross-modal retrieval
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Jing Yang, Chenghao Qin, Zengchang Yang, Zhuoqian Hu, Yue Zhang, Weifeng Institute of Information Engineering Chinese Academy of Sciences China Intelligent Computing and Machine Learning Lab Beihang University China College of Mathematics Physics and Information Engineering Jiaxing University China
Feature modeling of different modalities is a basic problem in current research of cross-modal information retrieval. Existing models typically project texts and images into one embedding space, in which semantically ... 详细信息
来源: 评论
Emotion classification with data augmentation using generative adversarial networks  22nd
Emotion classification with data augmentation using generati...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2018
作者: Zhu, Xinyue Liu, Yifan Li, Jiahong Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China School of Electronic Engineering Bejing University of Posts and Telecommunications Beijing China Beijing San Kuai Yun Technology Co. Ltd. Beijing China School of Biological Science and Medical Engineering Beijing Advanced Innovation Centre for Biomedical Engineering Beihang University Beijing China
It is a difficult task to classify images with multiple class labels using only a small number of labeled examples, especially when the label (class) distribution is imbalanced. Emotion classification is such an examp... 详细信息
来源: 评论