咨询与建议

限定检索结果

文献类型

  • 44 篇 会议
  • 30 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 75 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 45 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 7 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 林业工程
  • 28 篇 理学
    • 17 篇 数学
    • 10 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 6 篇 generative adver...
  • 6 篇 semantics
  • 4 篇 image segmentati...
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 image color anal...
  • 3 篇 visualization
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 breast cancer
  • 2 篇 graph neural net...
  • 2 篇 mapreduce
  • 2 篇 sports
  • 2 篇 clustering algor...
  • 2 篇 accuracy
  • 2 篇 mathematical mod...
  • 2 篇 forecasting
  • 1 篇 program debuggin...
  • 1 篇 image enhancemen...

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 school of cyber ...
  • 3 篇 key lab. of mach...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 intelligent comp...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 hu yue
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 sun yajing
  • 3 篇 li pengyu
  • 3 篇 chang xiangyu
  • 3 篇 he qing
  • 3 篇 li ning

语言

  • 73 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing & Machine Learning Lab"
75 条 记 录,以下是41-50 订阅
排序:
Caseg: Clip-Based Action Segmentation With Learnable Text Prompt
Caseg: Clip-Based Action Segmentation With Learnable Text Pr...
收藏 引用
IEEE International Conference on Image Processing
作者: Suyuan Huang Haoxin Zhang Yanyu Xu Yan Gao Yao Hu Zengchang Qin Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Xiaohongshu Inc. Institute of High Performance Computing A*Star Guangzhou Zhongsuan Cloud Technology Co.. Ltd.
Video action segmentation aims to identify and localize actions. Existing models have achieved impressive performance with pre-extracted frame-level features, but this may limit zero-shot learning and cross-dataset in... 详细信息
来源: 评论
Reasoning with Multi-Structure Commonsense Knowledge in Visual Dialog
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Shunyu Jiang, Xiaoze Yang, Zequn Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China School of BSME Beijing Advanced Innovation Center for Biomedical Engineering Beihang University China
Visual Dialog requires an agent to engage in a conversation with humans grounded in an image. Many studies on Visual Dialog focus on the understanding of the dialog history or the content of an image, while a consider... 详细信息
来源: 评论
Pixel level data augmentation for semantic image segmentation using generative adversarial networks
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Shuangting Zhang, Jiaqi Chen, Yuxin Liu, Yifan Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Keep Labs Keep Inc School of Biological Science and Medical Engineering Beihang University
Semantic segmentation is one of the basic topics in computer vision, it aims to assign semantic labels to every pixel of an image. Unbalanced semantic label distribution could have a negative influence on segmentation... 详细信息
来源: 评论
A HSC-based sample selection method for Support Vector machine
A HSC-based sample selection method for Support Vector Machi...
收藏 引用
International Conference on machine learning and Cybernetics
作者: He, Qing Li, Ning Shi, Zhong-Zhi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Hebei University Baoding 071002 Hebei China Graduate University of Chinese Academy of Sciences Hebei University Baoding 071002 Hebei China Key Lab. of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 Hebei China
Support Vector machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the s... 详细信息
来源: 评论
A bag-of-tones model with MFCC features for musical genre classification
A bag-of-tones model with MFCC features for musical genre cl...
收藏 引用
9th International Conference on Advanced Data Mining and Applications, ADMA 2013
作者: Qin, Zengchang Liu, Wei Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing 100191 China School of Advanced Engineering Beihang University Beijing 100191 China School of Biological Science and Medical Engineering Beihang University Beijing 100191 China Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 United States
Musical genres are categorical labels created by humans to characterize pieces of music. These labels may be highly subjective but typically are related to the instrumentation, rhythmic structure, and harmonic content... 详细信息
来源: 评论
Text generation based on generative adversarial nets with latent variable
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Heng Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a model using generative adver- sarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative ad- versarial net. The use... 详细信息
来源: 评论
KBGN: Knowledge-bridge graph network for adaptive vision-text reasoning in visual dialogue
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Xiaoze Du, Siyi Qin, Zengchang Sun, Yajing Yu, Jing Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China AI Research Codemao Inc Institute of Information Engineering Chinese Academy of Sciences Beijing China
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the curr... 详细信息
来源: 评论
Generalized label enhancement with sample correlations
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Qinghai Zhu, Jihua Tang, Haoyu Liu, Xinyuan Li, Zhongyu Lu, Huimin Lab of Vision Computing and Machine Learning School of Software Engineering Xi'an Jiaotong University Xi'an710049 China Environment Recognition & Intelligent Computation Laboratory Kyushu Institute of Technology Japan
Recently, label distribution learning (LDL) has drawn much attention in machine learning, where LDL model is learned from labelel instances. Different from single-label and multi-label annotations, label distributions... 详细信息
来源: 评论
An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features
An automatic breast cancer grading method in histopathologic...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Jiajia Cao Zengchang Qin Juan Jing Jianhui Chen Tao Wan Intelligent Computing & Machine Learning Lab Beihang University China School of Biological Science and Medical Engineering Beihang University China No. 91 Central Hospital of PLA Henan China
We present an automatic breast cancer grading method in histopathological images based on the computer extracted pixel-, object-, and semantic-level features derived from convolutional neural networks (CNN). The multi... 详细信息
来源: 评论
Semantic modeling of textual relationships in cross-modal retrieval
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Jing Yang, Chenghao Qin, Zengchang Yang, Zhuoqian Hu, Yue Zhang, Weifeng Institute of Information Engineering Chinese Academy of Sciences China Intelligent Computing and Machine Learning Lab Beihang University China College of Mathematics Physics and Information Engineering Jiaxing University China
Feature modeling of different modalities is a basic problem in current research of cross-modal information retrieval. Existing models typically project texts and images into one embedding space, in which semantically ... 详细信息
来源: 评论