咨询与建议

限定检索结果

文献类型

  • 44 篇 会议
  • 31 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 46 篇 计算机科学与技术...
    • 46 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 7 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 林业工程
  • 28 篇 理学
    • 17 篇 数学
    • 10 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 6 篇 generative adver...
  • 6 篇 semantics
  • 4 篇 image segmentati...
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 image color anal...
  • 3 篇 visualization
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 breast cancer
  • 2 篇 graph neural net...
  • 2 篇 mapreduce
  • 2 篇 sports
  • 2 篇 clustering algor...
  • 2 篇 accuracy
  • 2 篇 mathematical mod...
  • 2 篇 forecasting
  • 1 篇 program debuggin...
  • 1 篇 image enhancemen...

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 school of cyber ...
  • 3 篇 key lab. of mach...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 intelligent comp...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 hu yue
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 sun yajing
  • 3 篇 li pengyu
  • 3 篇 chang xiangyu
  • 3 篇 he qing
  • 3 篇 li ning

语言

  • 71 篇 英文
  • 5 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab"
76 条 记 录,以下是11-20 订阅
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient
arXiv
收藏 引用
arXiv 2024年
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论
Can Gaussian sketching converge faster on a preconditioned landscape?  24
Can Gaussian sketching converge faster on a preconditioned l...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Yilong Wang Haishan Ye Guang Dai Ivor W. Tsang Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China and SGIT AI Lab State Grid Corporation of China SGIT AI Lab State Grid Corporation of China CFAR and IHPC Agency for Science Technology and Research (A*STAR) Singapore and College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce...
来源: 评论
A Lightweight Network Model For Video Frame Interpolation Using Spatial Pyramids
A Lightweight Network Model For Video Frame Interpolation Us...
收藏 引用
IEEE International Conference on Image Processing
作者: Jiankai Zhuang Zengchang Qin Jialu Chen Tao Wan Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China School of BSME Beihang University China
In recent years, deep learning based video frame interpolation methods have shown impressive results in handling occlusion, blur and large motion. However, they are usually very heavy in terms of model size, and they ... 详细信息
来源: 评论
DAM: Deliberation, abandon and memory networks for generating detailed and non-repetitive responses in visual dialogue  29
DAM: Deliberation, abandon and memory networks for generatin...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Jiang, Xiaoze Yu, Jing Sun, Yajing Qin, Zengchang Zhu, Zihao Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China AI Research Codemao Inc University of Adelaide Australia
Visual Dialogue task requires an agent to be engaged in a conversation with human about an image. The ability of generating detailed and non-repetitive responses is crucial for the agent to achieve human-like conversa... 详细信息
来源: 评论
KBGN: Knowledge-bridge graph network for adaptive vision-text reasoning in visual dialogue
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Xiaoze Du, Siyi Qin, Zengchang Sun, Yajing Yu, Jing Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China AI Research Codemao Inc Institute of Information Engineering Chinese Academy of Sciences Beijing China
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the curr... 详细信息
来源: 评论
Generalized label enhancement with sample correlations
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Qinghai Zhu, Jihua Tang, Haoyu Liu, Xinyuan Li, Zhongyu Lu, Huimin Lab of Vision Computing and Machine Learning School of Software Engineering Xi'an Jiaotong University Xi'an710049 China Environment Recognition & Intelligent Computation Laboratory Kyushu Institute of Technology Japan
Recently, label distribution learning (LDL) has drawn much attention in machine learning, where LDL model is learned from labelel instances. Different from single-label and multi-label annotations, label distributions... 详细信息
来源: 评论
Follow me up sports: New benchmark for 2d human keypoint recognition  1
收藏 引用
2nd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2019
作者: Huang, Ying Sun, Bin Kan, Haipeng Zhuang, Jiankai Qin, Zengchang Alibaba Business School Hangzhou Normal University Hangzhou China Keep Inc Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China
Human pose estimation has made significant advancement in recent years. However, the existing datasets are limited in their coverage of pose variety. In this paper, we introduce a novel benchmark "FollowMeUp Spor... 详细信息
来源: 评论
CogTree: Cognition tree loss for unbiased scene graph generation
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Jing Chai, Yuan Wang, Yujing Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China Key Laboratory of Machine Perception MOE School of EECS Peking University Beijing China University of Adelaide Australia
Scene graphs are semantic abstraction of images that encourage visual understanding and reasoning. However, the performance of Scene Graph Generation (SGG) is unsatisfactory when faced with biased data in real-world s... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Tackling Instance-Dependent label Noise via a Universal Probabilistic Model
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Qizhou Han, Bo Liu, Tongliang Niu, Gang Yang, Jian Gong, Chen Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of MoE School of Computer Science and Engineering Nanjing University of Science and Technology China Department of Computer Science Hong Kong Baptist University Hong Kong Trustworthy Machine Learning Lab School of Computer Science Faculty of Engineering The University of Sydney Australia Japan Department of Computing Hong Kong Polytechnic University Hong Kong
The drastic increase of data quantity often brings the severe decrease of data quality, such as incorrect label annotations, which poses a great challenge for robustly training Deep Neural Networks (DNNs). Existing le... 详细信息
来源: 评论