咨询与建议

限定检索结果

文献类型

  • 44 篇 会议
  • 31 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 46 篇 计算机科学与技术...
    • 46 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 7 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 林业工程
  • 28 篇 理学
    • 17 篇 数学
    • 10 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 6 篇 generative adver...
  • 6 篇 semantics
  • 4 篇 image segmentati...
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 image color anal...
  • 3 篇 visualization
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 breast cancer
  • 2 篇 graph neural net...
  • 2 篇 mapreduce
  • 2 篇 sports
  • 2 篇 clustering algor...
  • 2 篇 accuracy
  • 2 篇 mathematical mod...
  • 2 篇 forecasting
  • 1 篇 program debuggin...
  • 1 篇 image enhancemen...

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 school of cyber ...
  • 3 篇 key lab. of mach...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 intelligent comp...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 hu yue
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 sun yajing
  • 3 篇 li pengyu
  • 3 篇 chang xiangyu
  • 3 篇 he qing
  • 3 篇 li ning

语言

  • 71 篇 英文
  • 5 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab"
76 条 记 录,以下是41-50 订阅
Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Yifan Qin, Zengchang Luo, Zhenbo Wang, Hua Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Samsung RandD Institute China Beijing 18F TaiTangGong Plaza Beijing100028 China
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images.... 详细信息
来源: 评论
Motif iteration model for network representation
arXiv
收藏 引用
arXiv 2017年
作者: Lv, Lintao Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beihang University Beijing Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing Beijing100191 China
Social media mining has become one of the most popular research areas in Big Data with the explosion of social networking information from Facebook, Twitter, LinkedIn,Weibo and so on. Understanding and representing th... 详细信息
来源: 评论
Biomedical image analysis competitions: The state of current participation practice
arXiv
收藏 引用
arXiv 2022年
作者: Eisenmann, Matthias Reinke, Annika Weru, Vivienn Tizabi, Minu Dietlinde Isensee, Fabian Adler, Tim J. Godau, Patrick Cheplygina, Veronika Kozubek, Michal Maier-Hein, Klaus Jäger, Paul F. Kopp-Schneider, Annette Maier-Hein, Lena Ali, Sharib Gupta, Anubha Kybic, Jan Noble, Alison de Solórzano, Carlos Ortiz Pachade, Samiksha Petitjean, Caroline Sage, Daniel Wei, Donglai Wilden, Elizabeth Alapatt, Deepak Andrearczyk, Vincent Baid, Ujjwal Bakas, Spyridon Balu, Niranjan Bano, Sophia Bawa, Vivek Singh Bernal, Jorge Bodenstedt, Sebastian Casella, Alessandro Choi, Jinwook Commowick, Olivier Daum, Marie Depeursinge, Adrien Dorent, Reuben Egger, Jan Eichhorn, Hannah Engelhardt, Sandy Ganz, Melanie Girard, Gabriel Hansen, Lasse Heinrich, Mattias Heller, Nicholas Hering, Alessa Huaulmé, Arnaud Kim, Hyunjeong Li, Hongwei Bran Landman, Bennett Li, Jianning Ma, Jun Martel, Anne Martín-Isla, Carlos Menze, Bjoern Nwoye, Chinedu Innocent Oreiller, Valentin Padoy, Nicolas Pati, Sarthak Payette, Kelly Sudre, Carole van Wijnen, Kimberlin Vardazaryan, Armine Vercauteren, Tom Wagner, Martin Wang, Chuanbo Yap, Moi Hoon Yu, Zeyun Yuan, Chun Zenk, Maximilian Zia, Aneeq Zimmerer, David Bao, Rina Choi, Chanyeol Cohen, Andrew Dzyubachyk, Oleh Galdran, Adrian Gan, Tianyuan Guo, Tianqi Gupta, Pradyumna Haithami, Mahmood Ho, Edward Jang, Ikbeom Li, Zhili Luo, Zhengbo Lux, Filip Makrogiannis, Sokratis Müller, Dominik Oh, Young-Tack Pang, Subeen Pape, Constantin Polat, Gorkem Reed, Charlotte Rosalie Ryu, Kanghyun Scherr, Tim Thambawita, Vajira Wang, Haoyu Wang, Xinliang Xu, Kele Yeh, Hung Yeo, Doyeob Yuan, Yixuan Zeng, Yan Zhao, Xin Abbing, Julian Adam, Jannes Adluru, Nagesh Agethen, Niklas Ahmed, Salman Al Khalil, Yasmina Alenyà, Mireia Alhoniemi, Esa An, Chengyang Arega, Tewodros Weldebirhan Avisdris, Netanell Aydogan, Dogu Baran Bai, Yingbin Calisto, Maria Baldeon Basaran, Berke Doga Beetz, Marcel Bian, Hao Blansit, Kevin Bloch, Louise Bohnsack, Robert Bosticardo, Sara Breen, Jack Brudfors, Mikael Brüngel, Raphael Cabezas, Mariano Cacciola, Alb Heidelberg Division of Intelligent Medical Systems Germany Heidelberg HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Biostatistics Germany Heidelberg Division of Medical Image Computing Germany Heidelberg HI Applied Vision Lab Germany IT University of Copenhagen Copenhagen Denmark Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Heidelberg Interactive Machine Learning Group Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg DKFZ University Hospital Heidelberg Germany School of Computing University of Leeds Leeds United Kingdom SBILab Department of ECE IIIT-Delhi India Faculty of Electrical Engineering Czech Technical University Prague Czech Republic Institute of Biomedical Engineering University of Oxford United Kingdom Center for Applied Medical Research Pamplona Spain Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Université de Rouen Normandie France Lausanne Switzerland School of Engineering and Applied Science Harvard University United States ICube University of Strasbourg CNRS France Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Techno-Pôle 3 Sierre3960 Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Rue du Bugnon 46 LausanneCH-1011 Switzerland University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Washington United States Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Visual Artificial Intelligence Lab Oxford Brookes University Oxford United Kingdom Universitat Autònoma de Barcelona & Computer Vision Center Spain Dresden Fetscherstraße 74 PF 64 Dresden01307 Germany
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bott... 详细信息
来源: 评论
Stock volatility prediction using recurrent neural networks with sentiment analysis
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Yifan Qin, Zengchang Li, Pengyu Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 School of Mechanical Engineering and Automation Beihang University Beijing100191 School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a model to analyze sentiment of online stock forum and use the information to predict the stock volatil-ity in the Chinese market. We have labeled the sentiment of the online financial posts ... 详细信息
来源: 评论
Stable matching in structured networks  14th
Stable matching in structured networks
收藏 引用
14th International Workshop on Knowledge Management and Acquisition for intelligent Systems, PKAW2016
作者: Ling, Ying Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China
Stable matching studies how to pair members of two sets with the objective to achieve a matching that satisfies all participating agents based on their preferences. In this research, we consider the case of matching i... 详细信息
来源: 评论
Emotion classification with data augmentation using generative adversarial networks
arXiv
收藏 引用
arXiv 2017年
作者: Zhu, Xinyue Liu, Yifan Qin, Zengchang Li, Jiahong School of Electronic Engineering Bejing University of Posts and Telecommunications Beijing100876 China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Beijing San Kuai Yun Technology Co. Ltd. Hengdian Building No.4 Wangjing East RD Chaoyang District Beijing China
It is a difficult task to classify images with multiple class labels using only a small number of labeled examples, especially when the label (class) distribution is imbalanced. Emotion classification is such an examp... 详细信息
来源: 评论
An improved hybrid active contour model for nuclear segmentation on breast cancer histopathology
An improved hybrid active contour model for nuclear segmenta...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Juan Jing Tao Wan Jiajia Cao Zengchang Qin School of Biological Science and Medical Engineering Beihang University China Intelligent Computing & Machine Learning Lab Beihang University China
Segmentation of nuclei on breast cancer histopathological images is considered a basic and essential step for diagnosis in a computer-aided diagnosis framework. Nuclear segmentation remains a challenging problem due t... 详细信息
来源: 评论
An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features
An automatic breast cancer grading method in histopathologic...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Jiajia Cao Zengchang Qin Juan Jing Jianhui Chen Tao Wan Intelligent Computing & Machine Learning Lab Beihang University China School of Biological Science and Medical Engineering Beihang University China No. 91 Central Hospital of PLA Henan China
We present an automatic breast cancer grading method in histopathological images based on the computer extracted pixel-, object-, and semantic-level features derived from convolutional neural networks (CNN). The multi... 详细信息
来源: 评论
An evolutionary model for efficient transportation networks  7
An evolutionary model for efficient transportation networks
收藏 引用
7th International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC 2015
作者: Huang, Ian Chen, Mei Yang, William Qin, Zengchang International School of Beijing Beijing China Department of Electrical Engineering University of Southern California United States Intelligent Computing and Machine Learning Lab Beihang University China School of Automation Science and Electrical Engineering Beihang University China
In this paper, we present a model to automatically generate efficient transportation networks given a simulated urban environment with predefined population distributions and other physical constraints. Based on the e... 详细信息
来源: 评论
An Evolutionary Model for Efficient Transportation Networks
An Evolutionary Model for Efficient Transportation Networks
收藏 引用
International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC
作者: Ian Huang Mei Chen William Yang Zengchang Qin International School of Beijing Baijing China Department of Electrical Engineering University of Southern California USA Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beihang University China
In this paper, we present a model to automatically generate efficient transportation networks given a simulated urban environment with predefined population distributions and other physical constraints. Based on the e... 详细信息
来源: 评论