咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 45 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 87 篇 工学
    • 67 篇 计算机科学与技术...
    • 65 篇 软件工程
    • 18 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 水利工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 26 篇 数学
    • 14 篇 物理学
    • 14 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
  • 26 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 generative adver...
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 5 篇 machine learning
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 feature extracti...
  • 4 篇 image color anal...
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 electroencephalo...
  • 3 篇 visualization
  • 3 篇 clustering algor...
  • 2 篇 zero-shot learni...
  • 2 篇 breast cancer
  • 2 篇 convolution
  • 2 篇 data mining
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 mapreduce

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 moe-microsoft ke...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 big data institu...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 center for brain...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 lu bao-liang
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 zhao hai
  • 6 篇 hu yue
  • 5 篇 wang ran
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 wang rui
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 de-shuang huang

语言

  • 112 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab."
114 条 记 录,以下是1-10 订阅
排序:
A graphical model for collective behavior learning using minority games
A graphical model for collective behavior learning using min...
收藏 引用
18th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2014
作者: Khawar, Farhan Qin, Zengchang Intelligent Computing and Machine Learning Lab. School of ASEE Beihang University Beijing China
The Minority Game (MG) is a simple game theory model for the collective behavior of agents in an idealized situation where they compete for some finite resource. In this paper, we assume that collective behavior is de... 详细信息
来源: 评论
Statistical fault localization using execution sequence
Statistical fault localization using execution sequence
收藏 引用
2012 International Conference on machine learning and Cybernetics, ICMLC 2012
作者: You, Zunwen Qin, Zengchang Zheng, Zheng Beihang University China Intelligent Computing and Machine Learning Lab. School of ASEE Beihang University China
Fault localization is one of the most expensive and time consuming jobs in program debugging. Many approaches were proposed in order to locate faults effectively and efficiently. In this paper, we proposed a novel sta... 详细信息
来源: 评论
Image super-resolution using local learnable kernel regression
Image super-resolution using local learnable kernel regressi...
收藏 引用
11th Asian Conference on Computer Vision, ACCV 2012
作者: Liao, Renjie Qin, Zengchang Intelligent Computing and Machine Learning Lab. School of Automation Science and Electrical Engineering Beihang University Beijing China
In this paper, we address the problem of learning-based image super-resolution and propose a novel approach called Local Learnable Kernel Regression (LLKR). The proposed model employs a local metric learning method to... 详细信息
来源: 评论
Classification of benign and malignant breast tumors in ultrasound images based on multiple sonographic and textural features
Classification of benign and malignant breast tumors in ultr...
收藏 引用
3rd International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC 2011
作者: Liao, Renjie Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab. School of ASEE Beihang University Beijing 100191 China Robotics Institute Carnegie Mellon University United States
We establish a new set of features for differentiating benign from malignant breast lesions using ultrasound (US) images. Two types of features (sonographic and textural features) are considered. Among them, three son... 详细信息
来源: 评论
A topic model of observing Chinese characters
A topic model of observing Chinese characters
收藏 引用
International Conference on intelligent Human-machine Systems and Cybernetics
作者: Zhang, Yunkai Qin, Zengchang College of Software Beihang University Beijing 100191 China Intelligent Computing and Machine Learning Lab. School of Automation Science and Electrical Engineering Beihang University 100191 China
The Topic Models are a class of hierarchical statistical models for analyzing document collections and it has become one of the most used techniques in Natural Language Processing in the recent years. It assumes that ... 详细信息
来源: 评论
Semi-automatic image annotation using sparse coding
Semi-automatic image annotation using sparse coding
收藏 引用
2012 International Conference on machine learning and Cybernetics, ICMLC 2012
作者: Zhang, Weifeng Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab. School of ASEE Beihang University Beijing 100191 China School of Medicine Boston University Boston MA 02215 United States
Automatically assigning keywords to images is of great interest as it allows one to index, retrieve, and understand large collections of image data. It has become a new research focus and many techniques have been pro... 详细信息
来源: 评论
What is the basic semantic unit of chinese language? A computational approach based on topic models
What is the basic semantic unit of chinese language? A compu...
收藏 引用
12th Meeting on Mathematics of Language, MOL 12
作者: Zhao, Qi Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab. School of Automation Science and Electrical Engineering Beihang University Beijing China Robotics Institute Carnegie Mellon University United States
Chinese language has been generally regarded as a Subject-Verb -Object (SVO) language and the basic semantic unit is the Chinese word that is usually consisted by two or more Chinese characters. However, word-centered... 详细信息
来源: 评论
DIVA: Domain invariant variational autoencoder
DIVA: Domain invariant variational autoencoder
收藏 引用
2019 Deep Generative Models for Highly Structured Data, DGS@ICLR 2019 Workshop
作者: Ilse, Maximilian Tomczak, Jakub M. Louizos, Christos Welling, Max Amsterdam Machine Learning Lab. University of Amsterdam Netherlands TNO Intelligent Imaging United Kingdom CIFAR Canada
We consider the problem of domain generalization, namely, how to learn representations given data from a set of domains that generalize to data from a previously unseen domain. We propose the domain invariant VAE (DIV... 详细信息
来源: 评论
A k-hyperplane-based neural network for non-linear regression
A k-hyperplane-based neural network for non-linear regressio...
收藏 引用
IEEE International Conference on Cognitive Informatics
作者: He, Hongmei Qin, Zengchang Department of Engineering Mathematics University of Bristol Bristol United Kingdom Intelligent Computing and Machine Learning Lab. School of Automation and Electrical Engineering Beihang University Beijing 100191 China
For the time series prediction problem, the relationship between the abstracted independent variables and the response variable is usually strong non-linear. We propose a neural network fusion model based on k-hyperpl... 详细信息
来源: 评论
Cross-modal information retrieval - A case study on Chinese wikipedia
Cross-modal information retrieval - A case study on Chinese ...
收藏 引用
8th International Conference on Advanced Data Mining and Applications, ADMA 2012
作者: Cong, Yonghui Qin, Zengchang Yu, Jing Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China Department of Biomedical Engineering Rutgers University United States
Probability models have been used in cross-modalmultimedia information retrieval recently by building conjunctive models bridging the text and image components. Previous studies have shown that cross-modal information... 详细信息
来源: 评论