咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 45 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 87 篇 工学
    • 67 篇 计算机科学与技术...
    • 65 篇 软件工程
    • 18 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 水利工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 26 篇 数学
    • 14 篇 物理学
    • 14 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
  • 26 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 generative adver...
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 5 篇 machine learning
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 feature extracti...
  • 4 篇 image color anal...
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 electroencephalo...
  • 3 篇 visualization
  • 3 篇 clustering algor...
  • 2 篇 zero-shot learni...
  • 2 篇 breast cancer
  • 2 篇 convolution
  • 2 篇 data mining
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 mapreduce

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 moe-microsoft ke...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 big data institu...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 center for brain...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 lu bao-liang
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 zhao hai
  • 6 篇 hu yue
  • 5 篇 wang ran
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 wang rui
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 de-shuang huang

语言

  • 112 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab."
114 条 记 录,以下是41-50 订阅
排序:
An improved hybrid active contour model for nuclear segmentation on breast cancer histopathology
An improved hybrid active contour model for nuclear segmenta...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Juan Jing Tao Wan Jiajia Cao Zengchang Qin School of Biological Science and Medical Engineering Beihang University China Intelligent Computing & Machine Learning Lab Beihang University China
Segmentation of nuclei on breast cancer histopathological images is considered a basic and essential step for diagnosis in a computer-aided diagnosis framework. Nuclear segmentation remains a challenging problem due t... 详细信息
来源: 评论
Marginalized denoising autoencoder via graph regularization for domain adaptation
Marginalized denoising autoencoder via graph regularization ...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Peng, Yong Wang, Shen Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong Unviersity Shanghai 200240 China Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 United States MoE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong Unviersity Shanghai 200240 China
Domain adaptation, which aims to learn domain-invariant features for sentiment classification, has received increasing attention. The underlying rationality of domain adaptation is that the involved domains share some... 详细信息
来源: 评论
Structure preserving low-rank representation for semi-supervised face recognition
Structure preserving low-rank representation for semi-superv...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Peng, Yong Wang, Suhang Wang, Shen Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong Unviersity Shanghai 200240 China Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 United States MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong Unviersity Shanghai 200240 China
Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calc... 详细信息
来源: 评论
A Topic Model of Observing Chinese Characters
A Topic Model of Observing Chinese Characters
收藏 引用
2010 Second International Conference on intelligent Human-machine Systems and Cybernetics(第二届智能人机系统与控制论国际学术会议 IHMSC 2010)
作者: Yunkai Zhang Zengchang Qin College of Software Beihang University Beijing China100191 Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineeri
The Topic Models are a class of hierarchical statistical models for analyzing document collections and it has become one of the most used techniques in Natural Language Processing in the recent years. It assumes t... 详细信息
来源: 评论
Multi-level network for high-speed multi-person pose estimation
arXiv
收藏 引用
arXiv 2019年
作者: Huang, Ying Zhuang, Jiankai Qin, Zengchang Alibaba Business School Hangzhou Normal University Hangzhou Intelligent Computing and Machine Learning Lab School of Asee Beihang University Beijing
In multi-person pose estimation, the left/right joint type discrimination is always a hard problem because of the similar appearance. Traditionally, we solve this problem by stacking multiple refinement modules to inc... 详细信息
来源: 评论
DAM: Deliberation, abandon and memory networks for generating detailed and non-repetitive responses in visual dialogue  29
DAM: Deliberation, abandon and memory networks for generatin...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Jiang, Xiaoze Yu, Jing Sun, Yajing Qin, Zengchang Zhu, Zihao Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China AI Research Codemao Inc University of Adelaide Australia
Visual Dialogue task requires an agent to be engaged in a conversation with human about an image. The ability of generating detailed and non-repetitive responses is crucial for the agent to achieve human-like conversa... 详细信息
来源: 评论
Multi-View Document Representation learning for Open-Domain Dense Retrieval
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Shunyu Liang, Yaobo Gong, Ming Jiang, Daxin Duan, Nan Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Microsoft Research Asia China Microsoft STC Asia
Dense retrieval has achieved impressive advances in first-stage retrieval from a large-scale document collection, which is built on bi-encoder architecture to produce single vector representation of query and document... 详细信息
来源: 评论
Personalizing EEG-based affective models with transfer learning  25
Personalizing EEG-based affective models with transfer learn...
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Zheng, Wei-Long Lu, Bao-Liang Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering China Brain Science and Technology Research Center Shanghai Jiao Tong University Shanghai China
Individual differences across subjects and nonstationary characteristic of electroencephalography (EEG) limit the generalization of affective braincomputer interfaces in real-world applications. On the other hand, it ... 详细信息
来源: 评论
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient  41
Double Variance Reduction: A Smoothing Trick for Composite O...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论
English to Chinese translation: How Chinese character matters?  29
English to Chinese translation: How Chinese character matter...
收藏 引用
29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
作者: Wang, Rui Zhao, Hai Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China
Word segmentation is helpful in Chinese natural language processing in many aspects. However it is showed that different word segmentation strategies do not affect the performance of Statistical machine Translation (S... 详细信息
来源: 评论