咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 46 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 88 篇 工学
    • 68 篇 计算机科学与技术...
    • 66 篇 软件工程
    • 18 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 水利工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 26 篇 数学
    • 14 篇 物理学
    • 14 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
  • 26 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 generative adver...
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 5 篇 machine learning
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 feature extracti...
  • 4 篇 image color anal...
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 electroencephalo...
  • 3 篇 visualization
  • 3 篇 clustering algor...
  • 2 篇 zero-shot learni...
  • 2 篇 breast cancer
  • 2 篇 convolution
  • 2 篇 data mining
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 mapreduce

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 moe-microsoft ke...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 big data institu...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 center for brain...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 lu bao-liang
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 zhao hai
  • 6 篇 hu yue
  • 5 篇 wang ran
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 wang rui
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 de-shuang huang

语言

  • 111 篇 英文
  • 4 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab."
115 条 记 录,以下是51-60 订阅
排序:
A Bayesian model of game decomposition  30th
A Bayesian model of game decomposition
收藏 引用
30th International Conference on Industrial, Engineering, and Other Applications of Applied intelligent Systems, IEA/AIE 2017
作者: Zhao, Hanqing Qin, Zengchang Liu, Weijia Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China École Centrale de Pékin Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a Bayesian probabilistic model to describe collective behavior generated by a finite number of agents competing for limited resources. In this model, the strategy for each agent is a binary c... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Text generation based on generative adversarial nets with latent variable
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Heng Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a model using generative adver- sarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative ad- versarial net. The use... 详细信息
来源: 评论
Logical parsing from natural language based on a neural translation model
arXiv
收藏 引用
arXiv 2017年
作者: Li, Liang Li, Pengyu Liu, Yifan Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Biomedical Imaging and Informatics Lab School of Biological Science and Medical Engineering Beihang University Beijing100191 China
Semantic parsing has emerged as a significant and powerful paradigm for natural language interface and question answering systems. Traditional methods of building a semantic parser rely on high-quality lexicons, hand-... 详细信息
来源: 评论
Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Yifan Qin, Zengchang Luo, Zhenbo Wang, Hua Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Samsung RandD Institute China Beijing 18F TaiTangGong Plaza Beijing100028 China
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images.... 详细信息
来源: 评论
Motif iteration model for network representation
arXiv
收藏 引用
arXiv 2017年
作者: Lv, Lintao Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beihang University Beijing Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing Beijing100191 China
Social media mining has become one of the most popular research areas in Big Data with the explosion of social networking information from Facebook, Twitter, LinkedIn,Weibo and so on. Understanding and representing th... 详细信息
来源: 评论
Biomedical image analysis competitions: The state of current participation practice
arXiv
收藏 引用
arXiv 2022年
作者: Eisenmann, Matthias Reinke, Annika Weru, Vivienn Tizabi, Minu Dietlinde Isensee, Fabian Adler, Tim J. Godau, Patrick Cheplygina, Veronika Kozubek, Michal Maier-Hein, Klaus Jäger, Paul F. Kopp-Schneider, Annette Maier-Hein, Lena Ali, Sharib Gupta, Anubha Kybic, Jan Noble, Alison de Solórzano, Carlos Ortiz Pachade, Samiksha Petitjean, Caroline Sage, Daniel Wei, Donglai Wilden, Elizabeth Alapatt, Deepak Andrearczyk, Vincent Baid, Ujjwal Bakas, Spyridon Balu, Niranjan Bano, Sophia Bawa, Vivek Singh Bernal, Jorge Bodenstedt, Sebastian Casella, Alessandro Choi, Jinwook Commowick, Olivier Daum, Marie Depeursinge, Adrien Dorent, Reuben Egger, Jan Eichhorn, Hannah Engelhardt, Sandy Ganz, Melanie Girard, Gabriel Hansen, Lasse Heinrich, Mattias Heller, Nicholas Hering, Alessa Huaulmé, Arnaud Kim, Hyunjeong Li, Hongwei Bran Landman, Bennett Li, Jianning Ma, Jun Martel, Anne Martín-Isla, Carlos Menze, Bjoern Nwoye, Chinedu Innocent Oreiller, Valentin Padoy, Nicolas Pati, Sarthak Payette, Kelly Sudre, Carole van Wijnen, Kimberlin Vardazaryan, Armine Vercauteren, Tom Wagner, Martin Wang, Chuanbo Yap, Moi Hoon Yu, Zeyun Yuan, Chun Zenk, Maximilian Zia, Aneeq Zimmerer, David Bao, Rina Choi, Chanyeol Cohen, Andrew Dzyubachyk, Oleh Galdran, Adrian Gan, Tianyuan Guo, Tianqi Gupta, Pradyumna Haithami, Mahmood Ho, Edward Jang, Ikbeom Li, Zhili Luo, Zhengbo Lux, Filip Makrogiannis, Sokratis Müller, Dominik Oh, Young-Tack Pang, Subeen Pape, Constantin Polat, Gorkem Reed, Charlotte Rosalie Ryu, Kanghyun Scherr, Tim Thambawita, Vajira Wang, Haoyu Wang, Xinliang Xu, Kele Yeh, Hung Yeo, Doyeob Yuan, Yixuan Zeng, Yan Zhao, Xin Abbing, Julian Adam, Jannes Adluru, Nagesh Agethen, Niklas Ahmed, Salman Al Khalil, Yasmina Alenyà, Mireia Alhoniemi, Esa An, Chengyang Arega, Tewodros Weldebirhan Avisdris, Netanell Aydogan, Dogu Baran Bai, Yingbin Calisto, Maria Baldeon Basaran, Berke Doga Beetz, Marcel Bian, Hao Blansit, Kevin Bloch, Louise Bohnsack, Robert Bosticardo, Sara Breen, Jack Brudfors, Mikael Brüngel, Raphael Cabezas, Mariano Cacciola, Alb Heidelberg Division of Intelligent Medical Systems Germany Heidelberg HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Biostatistics Germany Heidelberg Division of Medical Image Computing Germany Heidelberg HI Applied Vision Lab Germany IT University of Copenhagen Copenhagen Denmark Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Heidelberg Interactive Machine Learning Group Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg DKFZ University Hospital Heidelberg Germany School of Computing University of Leeds Leeds United Kingdom SBILab Department of ECE IIIT-Delhi India Faculty of Electrical Engineering Czech Technical University Prague Czech Republic Institute of Biomedical Engineering University of Oxford United Kingdom Center for Applied Medical Research Pamplona Spain Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Université de Rouen Normandie France Lausanne Switzerland School of Engineering and Applied Science Harvard University United States ICube University of Strasbourg CNRS France Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Techno-Pôle 3 Sierre3960 Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Rue du Bugnon 46 LausanneCH-1011 Switzerland University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Washington United States Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Visual Artificial Intelligence Lab Oxford Brookes University Oxford United Kingdom Universitat Autònoma de Barcelona & Computer Vision Center Spain Dresden Fetscherstraße 74 PF 64 Dresden01307 Germany
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bott... 详细信息
来源: 评论
Stock volatility prediction using recurrent neural networks with sentiment analysis
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Yifan Qin, Zengchang Li, Pengyu Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 School of Mechanical Engineering and Automation Beihang University Beijing100191 School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a model to analyze sentiment of online stock forum and use the information to predict the stock volatil-ity in the Chinese market. We have lab.led the sentiment of the online financial posts ... 详细信息
来源: 评论
Stable matching in structured networks  14th
Stable matching in structured networks
收藏 引用
14th International Workshop on Knowledge Management and Acquisition for intelligent Systems, PKAW2016
作者: Ling, Ying Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China
Stable matching studies how to pair members of two sets with the objective to achieve a matching that satisfies all participating agents based on their preferences. In this research, we consider the case of matching i... 详细信息
来源: 评论