咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 46 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 88 篇 工学
    • 68 篇 计算机科学与技术...
    • 66 篇 软件工程
    • 18 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 水利工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 26 篇 数学
    • 14 篇 物理学
    • 14 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
  • 26 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 generative adver...
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 5 篇 machine learning
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 feature extracti...
  • 4 篇 image color anal...
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 electroencephalo...
  • 3 篇 visualization
  • 3 篇 clustering algor...
  • 2 篇 zero-shot learni...
  • 2 篇 breast cancer
  • 2 篇 convolution
  • 2 篇 data mining
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 mapreduce

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 moe-microsoft ke...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 big data institu...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 center for brain...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 lu bao-liang
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 zhao hai
  • 6 篇 hu yue
  • 5 篇 wang ran
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 wang rui
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 de-shuang huang

语言

  • 111 篇 英文
  • 4 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab."
115 条 记 录,以下是61-70 订阅
排序:
Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks
Semantic Segmentation of Small Objects and Modeling of Uncer...
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Michael Kampffmeyer Arnt-Børre Salberg Robert Jenssen Machine Learning @ UiT Lab. Arctic Univ. of Norway Tromso Norway Norwegian Computing Center Machine Learning @ UiT Lab UiT-The Arctic University of Norway
We propose a deep Convolutional Neural Network (CNN) for land cover mapping in remote sensing images, with a focus on urban areas. In remote sensing, class imbalance represents often a problem for tasks like land cove... 详细信息
来源: 评论
Emotion classification with data augmentation using generative adversarial networks
arXiv
收藏 引用
arXiv 2017年
作者: Zhu, Xinyue Liu, Yifan Qin, Zengchang Li, Jiahong School of Electronic Engineering Bejing University of Posts and Telecommunications Beijing100876 China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Beijing San Kuai Yun Technology Co. Ltd. Hengdian Building No.4 Wangjing East RD Chaoyang District Beijing China
It is a difficult task to classify images with multiple class lab.ls using only a small number of lab.led examples, especially when the lab.l (class) distribution is imbalanced. Emotion classification is such an examp... 详细信息
来源: 评论
An improved hybrid active contour model for nuclear segmentation on breast cancer histopathology
An improved hybrid active contour model for nuclear segmenta...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Juan Jing Tao Wan Jiajia Cao Zengchang Qin School of Biological Science and Medical Engineering Beihang University China Intelligent Computing & Machine Learning Lab Beihang University China
Segmentation of nuclei on breast cancer histopathological images is considered a basic and essential step for diagnosis in a computer-aided diagnosis framework. Nuclear segmentation remains a challenging problem due t... 详细信息
来源: 评论
Personalizing EEG-based affective models with transfer learning  25
Personalizing EEG-based affective models with transfer learn...
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Zheng, Wei-Long Lu, Bao-Liang Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering China Brain Science and Technology Research Center Shanghai Jiao Tong University Shanghai China
Individual differences across subjects and nonstationary characteristic of electroencephalography (EEG) limit the generalization of affective braincomputer interfaces in real-world applications. On the other hand, it ... 详细信息
来源: 评论
An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features
An automatic breast cancer grading method in histopathologic...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Jiajia Cao Zengchang Qin Juan Jing Jianhui Chen Tao Wan Intelligent Computing & Machine Learning Lab Beihang University China School of Biological Science and Medical Engineering Beihang University China No. 91 Central Hospital of PLA Henan China
We present an automatic breast cancer grading method in histopathological images based on the computer extracted pixel-, object-, and semantic-level features derived from convolutional neural networks (CNN). The multi... 详细信息
来源: 评论
An evolutionary model for efficient transportation networks  7
An evolutionary model for efficient transportation networks
收藏 引用
7th International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC 2015
作者: Huang, Ian Chen, Mei Yang, William Qin, Zengchang International School of Beijing Beijing China Department of Electrical Engineering University of Southern California United States Intelligent Computing and Machine Learning Lab Beihang University China School of Automation Science and Electrical Engineering Beihang University China
In this paper, we present a model to automatically generate efficient transportation networks given a simulated urban environment with predefined population distributions and other physical constraints. Based on the e... 详细信息
来源: 评论
English to Chinese translation: How Chinese character matters?  29
English to Chinese translation: How Chinese character matter...
收藏 引用
29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
作者: Wang, Rui Zhao, Hai Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China
Word segmentation is helpful in Chinese natural language processing in many aspects. However it is showed that different word segmentation strategies do not affect the performance of Statistical machine Translation (S... 详细信息
来源: 评论
A machine learning method to distinguish machine translation from human translation  29
A machine learning method to distinguish machine translation...
收藏 引用
29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
作者: Li, Yitong Wang, Rui Zhai, Hai Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China
This paper introduces a machine learning ap-proach to distinguish machine translation texts from human texts in the sentence level au-Tomatically. In stead of traditional methods, we extract some linguistic features o... 详细信息
来源: 评论
High-order graph-based neural dependency parsing  29
High-order graph-based neural dependency parsing
收藏 引用
29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
作者: Zhang, Zhisong Zhao, Hai Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China
In this work, we present a novel way of using neural network for graph-based dependency parsing, which fits the neural network into a simple probabilistic model and can be furthermore generalized to high-order parsing... 详细信息
来源: 评论
Neural network language model for Chinese pinyin input method engine  29
Neural network language model for Chinese pinyin input metho...
收藏 引用
29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
作者: Chen, Shen-Yuan Wang, Rui Zhao, Hai Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China
Neural network language models (NNLMs) have been shown to outperform traditional n-gram language model. However, too high computational cost of NNLMs becomes the main obstacle of directly integrating it into pinyin IM... 详细信息
来源: 评论