咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 45 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 87 篇 工学
    • 67 篇 计算机科学与技术...
    • 65 篇 软件工程
    • 18 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 水利工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 26 篇 数学
    • 14 篇 物理学
    • 14 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
  • 26 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 generative adver...
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 5 篇 machine learning
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 feature extracti...
  • 4 篇 image color anal...
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 electroencephalo...
  • 3 篇 visualization
  • 3 篇 clustering algor...
  • 2 篇 zero-shot learni...
  • 2 篇 breast cancer
  • 2 篇 convolution
  • 2 篇 data mining
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 mapreduce

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 moe-microsoft ke...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 big data institu...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 center for brain...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 lu bao-liang
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 zhao hai
  • 6 篇 hu yue
  • 5 篇 wang ran
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 wang rui
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 de-shuang huang

语言

  • 112 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab."
114 条 记 录,以下是71-80 订阅
排序:
Text generation based on generative adversarial nets with latent variable
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Heng Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a model using generative adver- sarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative ad- versarial net. The use... 详细信息
来源: 评论
KBGN: Knowledge-bridge graph network for adaptive vision-text reasoning in visual dialogue
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Xiaoze Du, Siyi Qin, Zengchang Sun, Yajing Yu, Jing Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China AI Research Codemao Inc Institute of Information Engineering Chinese Academy of Sciences Beijing China
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the curr... 详细信息
来源: 评论
Generalized lab.l enhancement with sample correlations
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Qinghai Zhu, Jihua Tang, Haoyu Liu, Xinyuan Li, Zhongyu Lu, Huimin Lab of Vision Computing and Machine Learning School of Software Engineering Xi'an Jiaotong University Xi'an710049 China Environment Recognition & Intelligent Computation Laboratory Kyushu Institute of Technology Japan
Recently, lab.l distribution learning (LDL) has drawn much attention in machine learning, where LDL model is learned from lab.lel instances. Different from single-lab.l and multi-lab.l annotations, lab.l distributions... 详细信息
来源: 评论
An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features
An automatic breast cancer grading method in histopathologic...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Jiajia Cao Zengchang Qin Juan Jing Jianhui Chen Tao Wan Intelligent Computing & Machine Learning Lab Beihang University China School of Biological Science and Medical Engineering Beihang University China No. 91 Central Hospital of PLA Henan China
We present an automatic breast cancer grading method in histopathological images based on the computer extracted pixel-, object-, and semantic-level features derived from convolutional neural networks (CNN). The multi... 详细信息
来源: 评论
Semantic modeling of textual relationships in cross-modal retrieval
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Jing Yang, Chenghao Qin, Zengchang Yang, Zhuoqian Hu, Yue Zhang, Weifeng Institute of Information Engineering Chinese Academy of Sciences China Intelligent Computing and Machine Learning Lab Beihang University China College of Mathematics Physics and Information Engineering Jiaxing University China
Feature modeling of different modalities is a basic problem in current research of cross-modal information retrieval. Existing models typically project texts and images into one embedding space, in which semantically ... 详细信息
来源: 评论
EEG-based fatigue classification by using parallel hidden Markov model and pattern classifier combination
EEG-based fatigue classification by using parallel hidden Ma...
收藏 引用
19th International Conference on Neural Information Processing, ICONIP 2012
作者: Sun, Hui Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China Shanghai Key Laboratory of Scalable Computing and Systems Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China MOE Key Laboratory of Systems Biomedicine Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
Fatigue is the most important reason leading to traffic accidents. In order to ensure traffic safety, various methods based on electroencephalogram (EEG) are proposed. But most of them, either regression or classifica... 详细信息
来源: 评论
Online vigilance analysis combining video and electrooculography features
Online vigilance analysis combining video and electrooculogr...
收藏 引用
19th International Conference on Neural Information Processing, ICONIP 2012
作者: Du, Ruo-Fei Liu, Ren-Jie Wu, Tian-Xiang Lu, Bao-Liang Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China Shanghai Key Laboratory of Scalable Computing and Systems Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China MOE Key Laboratory of Systems Biomedicine Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
In this paper, we propose a novel system to analyze vigilance level combining both video and Electrooculography (EOG) features. For one thing, the video features extracted from an infrared camera include percentage of... 详细信息
来源: 评论
Logical parsing from natural language based on a neural translation model
arXiv
收藏 引用
arXiv 2017年
作者: Li, Liang Li, Pengyu Liu, Yifan Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Biomedical Imaging and Informatics Lab School of Biological Science and Medical Engineering Beihang University Beijing100191 China
Semantic parsing has emerged as a significant and powerful paradigm for natural language interface and question answering systems. Traditional methods of building a semantic parser rely on high-quality lexicons, hand-... 详细信息
来源: 评论
Followmeup sports: new benchmark for 2D human keypoint recognition
arXiv
收藏 引用
arXiv 2019年
作者: Huang, Ying Sun, Bin Kan, Haipeng Zhuang, Jiankai Qin, Zengchang Alibaba Business School Hangzhou Normal University Hangzhou China Keep Inc. Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China
Human pose estimation has made significant advancement in recent years. However, the existing datasets are limited in their coverage of pose variety. In this paper, we introduce a novel benchmark"FollowMeUp Sport... 详细信息
来源: 评论
Emotion classification with data augmentation using generative adversarial networks  22nd
Emotion classification with data augmentation using generati...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2018
作者: Zhu, Xinyue Liu, Yifan Li, Jiahong Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China School of Electronic Engineering Bejing University of Posts and Telecommunications Beijing China Beijing San Kuai Yun Technology Co. Ltd. Beijing China School of Biological Science and Medical Engineering Beijing Advanced Innovation Centre for Biomedical Engineering Beihang University Beijing China
It is a difficult task to classify images with multiple class lab.ls using only a small number of lab.led examples, especially when the lab.l (class) distribution is imbalanced. Emotion classification is such an examp... 详细信息
来源: 评论